53 resultados para Infertemporal and rhinal cortex

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study compared the effects of isoflurane in pigs (n=10 Yorkshire-Landrace cross) and dairy goats (n=10) by evaluation of electroencephalographic (EEG) burst suppression thresholds (BST) in the cerebral cortex and minimum alveolar concentration (MAC) values in the spinal cord. The study also investigated whether individual MAC values can predict the effects of isoflurane on the cerebral cortex. MAC values and BST/MAC ratios were significantly different between species. Inhibition of movement by isoflurane may be less effective in pigs than in goats. No significant correlation was found between individual MAC and BST values, indicating that in single animals the individual MAC poorly reflects the cerebrocortical depressant effect of isoflurane in pigs and goats.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mice that lack all beta1-class integrins in neurons and glia die prematurely after birth with severe brain malformations. Cortical hemispheres and cerebellar folia fuse, and cortical laminae are perturbed. These defects result from disorganization of the cortical marginal zone, where beta1-class integrins regulate glial endfeet anchorage, meningeal basement membrane remodeling, and formation of the Cajal-Retzius cell layer. Surprisingly, beta1-class integrins are not essential for neuron-glia interactions and neuronal migration during corticogenesis. The phenotype of the beta1-deficient mice resembles pathological changes observed in human cortical dysplasias, suggesting that defective integrin-mediated signal transduction contributes to the development of some of these diseases.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Visual imagery – similar to visual perception – activates feature-specific and category-specific visual areas. This is frequently observed in experiments where the instruction is to imagine stimuli that have been shown immediately before the imagery task. Hence, feature-specific activation could be related to the short-term memory retrieval of previously presented sensory information. Here, we investigated mental imagery of stimuli that subjects had not seen before, eliminating the effects of short-term memory. We recorded brain activation using fMRI while subjects performed a behaviourally controlled guided imagery task in predefined retinotopic coordinates to optimize sensitivity in early visual areas. Whole brain analyses revealed activation in a parieto-frontal network and lateral–occipital cortex. Region of interest (ROI) based analyses showed activation in left hMT/V5+. Granger causality mapping taking left hMT/V5+ as source revealed an imagery-specific directed influence from the left inferior parietal lobule (IPL). Interestingly, we observed a negative BOLD response in V1–3 during imagery, modulated by the retinotopic location of the imagined motion trace. Our results indicate that rule-based motion imagery can activate higher-order visual areas involved in motion perception, with a role for top-down directed influences originating in IPL. Lower-order visual areas (V1, V2 and V3) were down-regulated during this type of imagery, possibly reflecting inhibition to avoid visual input from interfering with the imagery construction. This suggests that the activation in early visual areas observed in previous studies might be related to short- or long-term memory retrieval of specific sensory experiences.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Therapy of metacarpal neck fractures depending on radiographically measured palmar angulation is discussed controversially in the literature. Some authors describe normal hand function of malunited metacarpal neck fractures with a palmar angulation up to 70°; others define 30° as the uppermost limit to maintain normal hand function. However, the methods of measuring palmar angulation are not clearly defined. Here, we present a new method to measure palmar angulation using ultrasound. The aim of this prospective study is to compare the radiographic methods of measuring palmar angulation with the ultrasound method. PATIENTS/MATERIAL AND METHOD: 20 patients with a neck fracture of the metacarpals IV or V were treated either conservatively or operatively. 2 weeks after trauma or operation, an x-ray was performed. 2 examiners measured the palmar angulation on the oblique and lateral projections using 2 different methods (medullary canal and dorsal cortex methods). At the same time, the 2 examiners performed measurements of palmar angulation using ultrasound. The measurements obtained with the different methods as well as by the 2 examiners at 2 different terms were compared. Intra- and interobserver reliability of each method was calculated, and for the ultrasound method a test for accuracy of the measured angles was performed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Abstract Objective. We assessed the relationships between (I) ultrasonography calcaneus T-scores (PIXI) and mandibular cortex characteristics on oral panoramic radiographs in older subjects; and (II) osteoporosis and periodontitis. Material and methods. We examined 778 subjects (53% women) aged 59-96 years. Periodontitis was defined by alveolar bone loss assessed from panoramic radiographs. Results. PIXI calcaneus T-values ?-2.5 (osteoporosis) were found in 16.3% of women and in 8.1% of men. PIXI calcaneus T-values <-1.6 (osteoporosis, adjusted) were found in 34.2% of women and in 21.4% of men. The age of the subjects and PIXI T-values were significantly correlated in women (Pearson's r = 0.37, P < 0.001) and men (Pearson's r = 0.19, P < 0.001). Periodontitis was found in 18.7% of subjects defined by alveolar bone level ?5 mm. Subjects with osteoporosis defined by adjusted PIXI T-values had fewer remaining teeth [mean difference 4.1, 95% confidence interval (CI) -1.1 to -6.5, P < 0.001]. The crude odds ratio (OR) of an association between the panoramic assessment of mandibular cortex erosions as a sign of osteoporosis and the adjusted T-value (T-value cut-off <-1.6) was 4.8 (95% CI 3.1-7.2, P < 0.001; Pearson ?(2) = 60.1, P < 0.001). A significant OR between osteoporosis and periodontitis was only found in women for the T-value cut-off ?-2.5 (crude OR 1.8, 95% CI 1.1-3.3, P < 0.03). Conclusions. An association between osteoporosis and periodontitis was only confirmed in women. The likelihood that the mandibular cortex index agrees with adjusted PIXI T-values is significant.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this study, we evaluated the in vivo characteristics of a new monoamine oxidase type B (MAO-B) radioligand, [¹⁸F]fluorodeprenyl, by positron emission tomography (PET) in two cynomolgus monkeys. The brain uptake of [¹⁸F]fluorodeprenyl was more than 7% (600% SUV) of the total injected radioactivity and similar to that of [¹¹C]deprenyl, an established MAO-B radioligand. The highest uptake was observed in the striatum, one of the MAO-B-rich regions, with a peak at approximately 2-3 min after injection, followed by lower uptake in the thalamus and the cortex and lowest uptake in the cerebellum. Brain uptake of [¹⁸F]fluorodeprenyl was largely inhibited by preadministration of the MAO-B inhibitor, L-deprenyl, whereas clorgyline, a MAO Type A blocker, had no significant inhibitory effect, thus demonstrating selectivity for MAO-B. [¹⁸F]Fluorodeprenyl showed relatively slow metabolism with the presence of two radiometabolite peaks with similar retention time as the labeled metabolites of [¹¹C]deprenyl. These results suggest that [¹⁸F]fluorodeprenyl is a potential PET radioligand for visualization of MAO-B activity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Stem cell transplantation promises new hope for the treatment of stroke although significant questions remain about how the grafted cells elicit their effects. One hypothesis is that transplanted stem cells enhance endogenous repair mechanisms activated after cerebral ischaemia. Recognizing that bilateral reorganization of surviving circuits is associated with recovery after stroke, we investigated the ability of transplanted human neural progenitor cells to enhance this structural plasticity. Our results show the first evidence that human neural progenitor cell treatment can significantly increase dendritic plasticity in both the ipsi- and contralesional cortex and this coincides with stem cell-induced functional recovery. Moreover, stem cell-grafted rats demonstrated increased corticocortical, corticostriatal, corticothalamic and corticospinal axonal rewiring from the contralesional side; with the transcallosal and corticospinal axonal sprouting correlating with functional recovery. Furthermore, we demonstrate that axonal transport, which is critical for both proper axonal function and axonal sprouting, is inhibited by stroke and that this is rescued by the stem cell treatment, thus identifying another novel potential mechanism of action of transplanted cells. Finally, we established in vitro co-culture assays in which these stem cells mimicked the effects observed in vivo. Through immunodepletion studies, we identified vascular endothelial growth factor, thrombospondins 1 and 2, and slit as mediators partially responsible for stem cell-induced effects on dendritic sprouting, axonal plasticity and axonal transport in vitro. Thus, we postulate that human neural progenitor cells aid recovery after stroke through secretion of factors that enhance brain repair and plasticity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

RATIONALE: High levels of calcium independent phospholipase A2 (iPLA2) are present in certain regions of the brain, including the cerebral cortex, striatum, and cerebellum (Ong et al. 2005). OBJECTIVES: The present study was carried out to elucidate a possible role of the enzyme in the motor system. METHODS: The selective iPLA2 inhibitor bromoenol lactone (BEL), the nonselective PLA2 inhibitor methyl arachidonyl fluorophosphonate (MAFP), and an antisense oligonucleotide were used to interfere with iPLA2 activity in various components of the motor system. Control animals received injections of carrier (phosphate buffered saline, PBS) at the same locations. The number of vacuous chewing movements (VCM) was counted from 1 to 14 days after injection. RESULTS: Rats that received BEL and high-dose MAFP injections in the striatum, thalamus, and motor cortex, but not the cerebellum, showed significant increase in VCM, compared to those injected with PBS at these locations. BEL-induced VCM were blocked by intramuscular injections of the anticholinergic drug, benztropine. Increased VCM was also observed after intrastriatal injection of antisense oligonucleotide to iPLA2. The latter caused a decrease in striatal iPLA2 levels, confirming a role of decreased enzyme activity in the appearance of VCM. CONCLUSIONS: These results suggest an important role for iPLA2 in the cortex-striatum-thalamus-cortex circuitry. It is postulated that VCM induced by iPLA2 inhibition may be a model of human parkinsonian tremor.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

INTRODUCTION: Substantial heterogeneity remains across studies investigating changes in gray matter in schizophrenia. Differences in methodology, heterogeneous symptom patterns and symptom trajectories may contribute to inconsistent findings. To address this problem, we recently proposed to group patients by symptom dimensions, which map on the language, the limbic and the motor systems. The aim of the present study was to investigate whether patients with prevalent symptoms of emotional dysregulation would show structural neuronal abnormalities in the limbic system. METHOD: 43 right-handed medicated patients with schizophrenia were assessed with the Bern Psychopathology Scale (BPS). The patients and a control group of 34 healthy individuals underwent structural imaging at a 3T MRI scanner. Whole brain voxel-based morphometry (VBM) was compared between patient subgroups with different severity of emotional dysregulation. Group comparisons (comparison between patients with severe emotional dysregulation, patients with mild emotional dysregulation, patients with no emotional dysregulation and healthy controls) were performed using a one way ANOVA and ANCOVA respectively. RESULTS: Patients with severe emotional dysregulation had significantly decreased gray matter density in a large cluster including the right ventral striatum and the head of the caudate compared to patients without emotional dysregulation. Comparing patients with severe emotional dysregulation and healthy controls, several clusters of significant decreased GM density were detected in patients, including the right ventral striatum, head of the caudate, left hippocampus, bilateral thalamus, dorsolateral prefrontal and orbitofrontal cortex. The significant effect in the ventral striatum was lost when patients with and without emotional dysregulation were pooled and compared with controls. DISCUSSION: Decreased gray matter density in a large cluster including the right ventral striatum was associated with severe symptoms of emotional dysregulation in patients with schizophrenia. The ventral striatum is an important part of the limbic system, and was indicated to be involved in the generation of incentive salience and psychotic symptoms. Only patients with severe emotional dysregulation had decreased gray matter in several brain structures associated with emotion and reward processing compared to healthy controls. The results support the hypothesis that grouping patients according to specific clinical symptoms matched to the limbic system allows identifying patient subgroups with structural abnormalities in the limbic network.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The γ-aminobutyric acid (GABA) system has been proposed as a target for novel antidepressant and anxiolytic treatments. Emerging evidence suggests that gabapentin (GBP), an anticonvulsant drug that significantly increases brain GABA levels, is effective in the treatment of anxiety disorders. The current study was designed to measure prefrontal and occipital GABA levels in medication-free healthy subjects after taking 0 mg, 150 mg and 300 mg GBP. Subjects were scanned on a 3T scanner using a transmit-receive head coil that provided a relatively homogenous radiofrequency field to obtain spectroscopy measurement in the medial prefrontal (MPFC) and occipital cortex (OCC). There was no dose-dependent effect of GBP on GABA levels in the OCC or MPFC. There was also no effect on Glx, choline or N-acetyl-aspartate concentrations. The previously reported finding of increased GABA levels after GBP treatment is not evident for healthy subjects at the dose of 150 and 300 mg. As a result, if subjects are scanned on a 3T scanner, low dose GPB is not useful as an experimental challenge agent on the GABA system.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The vestibular system contributes to the control of posture and eye movements and is also involved in various cognitive functions including spatial navigation and memory. These functions are subtended by projections to a vestibular cortex, whose exact location in the human brain is still a matter of debate (Lopez and Blanke, 2011). The vestibular cortex can be defined as the network of all cortical areas receiving inputs from the vestibular system, including areas where vestibular signals influence the processing of other sensory (e.g. somatosensory and visual) and motor signals. Previous neuroimaging studies used caloric vestibular stimulation (CVS), galvanic vestibular stimulation (GVS), and auditory stimulation (clicks and short-tone bursts) to activate the vestibular receptors and localize the vestibular cortex. However, these three methods differ regarding the receptors stimulated (otoliths, semicircular canals) and the concurrent activation of the tactile, thermal, nociceptive and auditory systems. To evaluate the convergence between these methods and provide a statistical analysis of the localization of the human vestibular cortex, we performed an activation likelihood estimation (ALE) meta-analysis of neuroimaging studies using CVS, GVS, and auditory stimuli. We analyzed a total of 352 activation foci reported in 16 studies carried out in a total of 192 healthy participants. The results reveal that the main regions activated by CVS, GVS, or auditory stimuli were located in the Sylvian fissure, insula, retroinsular cortex, fronto-parietal operculum, superior temporal gyrus, and cingulate cortex. Conjunction analysis indicated that regions showing convergence between two stimulation methods were located in the median (short gyrus III) and posterior (long gyrus IV) insula, parietal operculum and retroinsular cortex (Ri). The only area of convergence between all three methods of stimulation was located in Ri. The data indicate that Ri, parietal operculum and posterior insula are vestibular regions where afferents converge from otoliths and semicircular canals, and may thus be involved in the processing of signals informing about body rotations, translations and tilts. Results from the meta-analysis are in agreement with electrophysiological recordings in monkeys showing main vestibular projections in the transitional zone between Ri, the insular granular field (Ig), and SII.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND AND PURPOSE To assess the association of lesion location and risk of aspiration and to establish predictors of transient versus extended risk of aspiration after supratentorial ischemic stroke. METHODS Atlas-based localization analysis was performed in consecutive patients with MRI-proven first-time acute supratentorial ischemic stroke. Standardized swallowing assessment was carried out within 8±18 hours and 7.8±1.2 days after admission. RESULTS In a prospective, longitudinal analysis, 34 of 94 patients (36%) were classified as having acute risk of aspiration, which was extended (≥7 days) or transient (<7 days) in 17 cases. There were no between-group differences in age, sex, cause of stroke, risk factors, prestroke disability, lesion side, or the degree of age-related white-matter changes. Correcting for stroke volume and National Institutes of Health Stroke Scale with a multiple logistic regression model, significant adjusted odds ratios in favor of acute risk of aspiration were demonstrated for the internal capsule (adjusted odds ratio, 6.2; P<0.002) and the insular cortex (adjusted odds ratio, 4.8; P<0.003). In a multivariate model of extended versus transient risk of aspiration, combined lesions of the frontal operculum and insular cortex was the only significant independent predictor of poor recovery (adjusted odds ratio, 33.8; P<0.008). CONCLUSIONS Lesions of the insular cortex and the internal capsule are significantly associated with acute risk of aspiration after stroke. Combined ischemic infarctions of the frontal operculum and the insular cortex are likely to cause extended risk of aspiration in stroke patients, whereas risk of aspiration tends to be transient in subcortical stroke.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

PURPOSE To determine the variability of apparent diffusion coefficient (ADC) values in various anatomic regions in the upper abdomen measured with magnetic resonance (MR) systems from different vendors and with different field strengths. MATERIALS AND METHODS Ten healthy men (mean age, 36.6 years ± 7.7 [standard deviation]) gave written informed consent to participate in this prospective ethics committee-approved study. Diffusion-weighted (DW) MR imaging was performed in each subject with 1.5- and 3.0-T MR systems from each of three vendors at two institutions. Two readers independently measured ADC values in seven upper abdominal regions (left and right liver lobe, gallbladder, pancreas, spleen, and renal cortex and medulla). ADC values were tested for interobserver differences, as well as for differences related to field strength and vendor, with repeated-measures analysis of variance; coefficients of variation (CVs) and variance components were calculated. RESULTS Interreader agreement was excellent (intraclass coefficient, 0.876). ADC values were (77.5-88.8) ×10(-5) mm(2)/sec in the spleen and (250.6-278.5) ×10(-5) mm(2)/sec in the gallbladder. There were no significant differences between ADC values measured at 1.5 T and those measured at 3.0 T in any anatomic region (P >.10 for all). In two of seven regions at 1.5 T (left and right liver lobes, P < .023) and in four of seven regions at 3.0 T (left liver lobe, pancreas, and renal cortex and medulla, P < .008), intervendor differences were significant. CVs ranged from 7.0% to 27.1% depending on the anatomic location. CONCLUSION Despite significant intervendor differences in ADC values of various anatomic regions of the upper abdomen, ADC values of the gallbladder, pancreas, spleen, and kidney may be comparable between MR systems from different vendors and between different field strengths.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The endocannabinoid system (ECS) comprises the cannabinoid receptors CB1 and CB2 and their endogenous arachidonic acid-derived agonists 2-arachidonoyl glycerol and anandamide, which play important neuromodulatory roles. Recently, a novel class of negative allosteric CB1 receptor peptide ligands, hemopressin-like peptides derived from alpha hemoglobin, has been described, with yet unknown origin and function in the CNS. Using monoclonal antibodies we now identified the localization of RVD-hemopressin (pepcan-12) and N-terminally extended peptide endocannabinoids (pepcans) in the CNS and determined their neuronal origin. Immunohistochemical analyses in rodents revealed distinctive and specific staining in major groups of noradrenergic neurons, including the locus coeruleus (LC), A1, A5 and A7 neurons, which appear to be major sites of production/release in the CNS. No staining was detected in dopaminergic neurons. Peptidergic axons were seen throughout the brain (notably hippocampus and cerebral cortex) and spinal cord, indicative of anterograde axonal transport of pepcans. Intriguingly, the chromaffin cells in the adrenal medulla were also strongly stained for pepcans. We found specific co-expression of pepcans with galanin, both in the LC and adrenal gland. Using LC-MS/MS, pepcan-12 was only detected in non-perfused brain (∼40 pmol/g), suggesting that in the CNS it is secreted and present in extracellular compartments. In adrenal glands, significantly more pepcan-12 (400-700 pmol/g) was measured in both non-perfused and perfused tissue. Thus, chromaffin cells may be a major production site of pepcan-12 found in blood. These data uncover important areas of peptide endocannabinoid occurrence with exclusive noradrenergic immunohistochemical staining, opening new doors to investigate their potential physiological function in the ECS. This article is part of a Special Issue entitled 'Fluorescent Neuro-Ligands'.