3 resultados para Inference process
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
Logical theories for representing knowledge are often plagued by the so-called Logical Omniscience Problem. The problem stems from the clash between the desire to model rational agents, which should be capable of simple logical inferences, and the fact that any logical inference, however complex, almost inevitably consists of inference steps that are simple enough. This contradiction points to the fruitlessness of trying to solve the Logical Omniscience Problem qualitatively if the rationality of agents is to be maintained. We provide a quantitative solution to the problem compatible with the two important facets of the reasoning agent: rationality and resource boundedness. More precisely, we provide a test for the logical omniscience problem in a given formal theory of knowledge. The quantitative measures we use are inspired by the complexity theory. We illustrate our framework with a number of examples ranging from the traditional implicit representation of knowledge in modal logic to the language of justification logic, which is capable of spelling out the internal inference process. We use these examples to divide representations of knowledge into logically omniscient and not logically omniscient, thus trying to determine how much information about the reasoning process needs to be present in a theory to avoid logical omniscience.
Resumo:
The present distribution of freshwater fish in the Alpine region has been strongly affected by colonization events occurring after the last glacial maximum (LGM), some 20,000 years ago. We use here a spatially explicit simulation framework to model and better understand their colonization dynamics in the Swiss Rhine basin. This approach is applied to the European bullhead (Cottus gobio), which is an ideal model organism to study fish past demographic processes since it has not been managed by humans. The molecular diversity of eight sampled populations is simulated and compared to observed data at six microsatellite loci under an approximate Bayesian computation framework to estimate the parameters of the colonization process. Our demographic estimates fit well with current knowledge about the biology of this species, but they suggest that the Swiss Rhine basin was colonized very recently, after the Younger Dryas some 6600 years ago. We discuss the implication of this result, as well as the strengths and limits of the spatially explicit approach coupled to the approximate Bayesian computation framework.
On degeneracy and invariances of random fields paths with applications in Gaussian process modelling
Resumo:
We study pathwise invariances and degeneracies of random fields with motivating applications in Gaussian process modelling. The key idea is that a number of structural properties one may wish to impose a priori on functions boil down to degeneracy properties under well-chosen linear operators. We first show in a second order set-up that almost sure degeneracy of random field paths under some class of linear operators defined in terms of signed measures can be controlled through the two first moments. A special focus is then put on the Gaussian case, where these results are revisited and extended to further linear operators thanks to state-of-the-art representations. Several degeneracy properties are tackled, including random fields with symmetric paths, centred paths, harmonic paths, or sparse paths. The proposed approach delivers a number of promising results and perspectives in Gaussian process modelling. In a first numerical experiment, it is shown that dedicated kernels can be used to infer an axis of symmetry. Our second numerical experiment deals with conditional simulations of a solution to the heat equation, and it is found that adapted kernels notably enable improved predictions of non-linear functionals of the field such as its maximum.