15 resultados para Induced elevation
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
The annexins, a family of Ca(2+)- and lipid-binding proteins, are involved in a range of intracellular processes. Recent findings have implicated annexin A1 in the resealing of plasmalemmal injuries. Here, we demonstrate that another member of the annexin protein family, annexin A6, is also involved in the repair of plasmalemmal lesions induced by a bacterial pore-forming toxin, streptolysin O. An injury-induced elevation in the intracellular concentration of Ca(2+) ([Ca(2+)](i)) triggers plasmalemmal repair. The highly Ca(2+)-sensitive annexin A6 responds faster than annexin A1 to [Ca(2+)](i) elevation. Correspondingly, a limited plasmalemmal injury can be promptly countered by annexin A6 even without the participation of annexin A1. However, its high Ca(2+) sensitivity makes annexin A6 highly amenable to an unproductive binding to the uninjured plasmalemma; during an extensive injury accompanied by a massive elevation in [Ca(2+)](i), its active pool is severely depleted. In contrast, annexin A1 with a much lower Ca(2+) sensitivity is ineffective at the early stages of injury; however, it remains available for the repair even at high [Ca(2+)](i). Our findings highlight the role of the annexins in the process of plasmalemmal repair; a number of annexins with different Ca(2+)-sensitivities provide a cell with the means to react promptly to a limited injury in its early stages and, at the same time, to withstand a sustained injury accompanied by the continuous formation of plasmalemmal lesions.
Resumo:
Acute mental stress is a potent trigger of acute coronary syndromes. Catecholamine-induced hypercoagulability with acute stress contributes to thrombus growth after coronary plaque rupture. Melatonin may diminish catecholamine activity. We hypothesized that melatonin mitigates the acute procoagulant stress response and that this effect is accompanied by a decrease in the stress-induced catecholamine surge. Forty-five healthy young men received a single oral dose of either 3 mg melatonin (n = 24) or placebo medication (n = 21). One hour thereafter, they underwent a standardized short-term psychosocial stressor. Plasma levels of clotting factor VII activity (FVII:C), FVIII:C, fibrinogen, D-dimer, and catecholamines were measured at rest, immediately after stress, and 20 min and 60 min post-stress. The integrated change in D-dimer levels from rest to 60 min post-stress differed between medication groups controlling for demographic and metabolic factors (P = 0.047, eta(p)(2) = 0.195). Compared with the melatonin group, the placebo group showed a greater increase in absolute D-dimer levels from rest to immediately post-stress (P = 0.13; eta(p)(2) = 0.060) and significant recovery of D-dimer levels from immediately post-stress to 60 min thereafter (P = 0.007; eta(p)(2) = 0.174). Stress-induced changes in FVII:C, FVIII:C, fibrinogen, and catecholamines did not significantly differ between groups. Oral melatonin attenuated the stress-induced elevation in the sensitive coagulation activation marker D-dimer without affecting catecholamine activity. The finding provides preliminary support for a protective effect of melatonin in reducing the atherothrombotic risk with acute mental stress.
Resumo:
Alcohol-induced liver disease (ALD) is a leading cause of nonaccident-related deaths in the United States. Although liver damage caused by ALD is reversible when discovered at the earlier stages, current risk assessment tools are relatively nonspecific. Identification of an early specific signature of ALD would aid in therapeutic intervention and recovery. In this study, the metabolic changes associated with ALD were examined using alcohol-fed male Ppara-null mouse as a model of ALD. Principal components analysis of the mass spectrometry-based urinary metabolic profile showed that alcohol-treated wild-type and Ppara-null mice could be distinguished from control animals without information on history of alcohol consumption. The urinary excretion of ethyl-sulfate, ethyl-beta-d-glucuronide, 4-hydroxyphenylacetic acid, and 4-hydroxyphenylacetic acid sulfate was elevated and that of the 2-hydroxyphenylacetic acid, adipic acid, and pimelic acid was depleted during alcohol treatment in both wild-type and the Ppara-null mice albeit to different extents. However, indole-3-lactic acid was exclusively elevated by alcohol exposure in Ppara-null mice. The elevation of indole-3-lactic acid is mechanistically related to the molecular events associated with development of ALD in alcohol-treated Ppara-null mice. This study demonstrated the ability of a metabolomics approach to identify early, noninvasive biomarkers of ALD pathogenesis in Ppara-null mouse model.
Resumo:
Since the development and prognosis of alcohol-induced liver disease (ALD) vary significantly with genetic background, identification of a genetic background-independent noninvasive ALD biomarker would significantly improve screening and diagnosis. This study explored the effect of genetic background on the ALD-associated urinary metabolome using the Ppara-null mouse model on two different backgrounds, C57BL/6 (B6) and 129/SvJ (129S), along with their wild-type counterparts. Reversed-phase gradient UPLC-ESI-QTOF-MS analysis revealed that urinary excretion of a number of metabolites, such as ethylsulfate, 4-hydroxyphenylacetic acid, 4-hydroxyphenylacetic acid sulfate, adipic acid, pimelic acid, xanthurenic acid, and taurine, were background-dependent. Elevation of ethyl-β-d-glucuronide and N-acetylglycine was found to be a common signature of the metabolomic response to alcohol exposure in wild-type as well as in Ppara-null mice of both strains. However, increased excretion of indole-3-lactic acid and phenyllactic acid was found to be a conserved feature exclusively associated with the alcohol-treated Ppara-null mouse on both backgrounds that develop liver pathologies similar to the early stages of human ALD. These markers reflected the biochemical events associated with early stages of ALD pathogenesis. The results suggest that indole-3-lactic acid and phenyllactic acid are potential candidates for conserved and pathology-specific high-throughput noninvasive biomarkers for early stages of ALD.
Resumo:
Hypomagnesemia affects insulin resistance and is a risk factor for diabetes mellitus type 2 (DM2) and gestational diabetes mellitus (GDM). Two single nucleotide polymorphisms (SNPs) in the epithelial magnesium channel TRPM6 (V(1393)I, K(1584)E) were predicted to confer susceptibility for DM2. Here, we show using patch clamp analysis and total internal reflection fluorescence microscopy, that insulin stimulates TRPM6 activity via a phosphoinositide 3-kinase and Rac1-mediated elevation of cell surface expression of TRPM6. Interestingly, insulin failed to activate the genetic variants TRPM6(V(1393)I) and TRPM6(K(1584)E), which is likely due to the inability of the insulin signaling pathway to phosphorylate TRPM6(T(1391)) and TRPM6(S(1583)). Moreover, by measuring total glycosylated hemoglobin (TGH) in 997 pregnant women as a measure of glucose control, we demonstrate that TRPM6(V(1393)I) and TRPM6(K(1584)E) are associated with higher TGH and confer a higher likelihood of developing GDM. The impaired response of TRPM6(V(1393)I) and TRPM6(K(1584)E) to insulin represents a unique molecular pathway leading to GDM where the defect is located in TRPM6.
Resumo:
OBJECTIVE: Brugada syndrome (BS) is an inherited electrical cardiac disorder characterized by right bundle branch block pattern and ST segment elevation in leads V1 to V3 on surface electrocardiogram that can potentially lead to malignant ventricular tachycardia and sudden cardiac death. About 20% of patients have mutations in the only so far identified gene, SCN5A, which encodes the alpha-subunit of the human cardiac voltage-dependent sodium channel (hNa(v)1.5). Fever has been shown to unmask or trigger the BS phenotype, but the associated molecular and the biophysical mechanisms are still poorly understood. We report on the identification and biophysical characterization of a novel heterozygous missense mutation in SCN5A, F1344S, in a 42-year-old male patient showing the BS phenotype leading to ventricular fibrillation during fever. METHODS: The mutation was reproduced in vitro using site-directed mutagenesis and characterized using the patch clamp technique in the whole-cell configuration. RESULTS: The biophysical characterization of the channels carrying the F1344S mutation revealed a 10 mV mid-point shift of the G/V curve toward more positive voltages during activation. Raising the temperature to 40.5 degrees C further shifted the mid-point activation by 18 mV and significantly changed the slope factor in Na(v)1.5/F1344S mutant channels from -6.49 to -10.27 mV. CONCLUSIONS: Our findings indicate for the first time that the shift in activation and change in the slope factor at a higher temperature mimicking fever could reduce sodium currents' amplitude and trigger the manifestation of the BS phenotype.
Resumo:
The identification of 15N-labeled 3-nitrotyrosine (NTyr) by gas chromatography/mass spectroscopy in protein hydrolyzates from activated RAW 264.7 macrophages incubated with 15N-L-arginine confirms that nitric oxide synthase (NOS) is involved in the nitration of protein-bound tyrosine (Tyr). An assay is presented for NTyr that employs HPLC with tandem electrochemical and UV detection. The assay involves enzymatic hydrolysis of protein, acetylation, solvent extraction, O-deacetylation, and dithionite reduction to produce an analyte containing N-acetyl-3-aminotyrosine, an electrochemically active derivative of NTyr. We estimate the level of protein-bound NTyr in normal rat plasma to be approximately 0-1 residues per 10(6) Tyr with a detection limit of 0.5 per 10(7) Tyr when > 100 nmol of Tyr is analyzed and when precautions are taken to limit nitration artifacts. Zymosan-treated RAW 264.7 cells were shown to have an approximately 6-fold higher level of protein-bound NTyr compared with control cells and cells treated with N(G)-monomethyl-L-arginine, an inhibitor of NOS. Intraperitoneal injection of F344 rats with zymosan led to a marked elevation in protein-bound NTyr to approximately 13 residues per 10(6) Tyr, an approximately 40-fold elevation compared with plasma protein of untreated rats; cotreatment with N(G)-monomethyl-L-arginine inhibited the formation of NTyr in plasma protein from blood and peritoneal exudate by 69% and 53%, respectively. This assay offers a highly sensitive and quantitative approach for investigating the role of reactive byproducts of nitric oxide in the many pathological conditions and disease states associated with NO(X) exposure such as inflammation and smoking.
Resumo:
Background The principal causes of liver enzyme elevation among HIV-hepatitis B virus (HBV) co-infected patients are the hepatotoxic effects of antiretroviral therapy (ART), alcohol abuse, ART-induced immune reconstitution and the exacerbation of chronic HBV infection. Objectives To investigate the incidence and severity of liver enzyme elevation, liver failure and death following lamivudine (3TC) withdrawal in HIV-HBV co-infected patients. Methods Retrospective analysis of the Swiss HIV Cohort Study database to assess the clinical and biological consequences of the discontinuation of 3TC. Variables considered for analysis included liver enzyme, HIV virological and immunological parameters, and medication prescribed during a 6-month period following 3TC withdrawal. Results 3TC was discontinued in 255 patients on 363 occasions. On 147 occasions (109 patients), a follow-up visit within 6 months following 3TC withdrawal was recorded. Among these patients, liver enzyme elevation occurred on 42 occasions (29%), three of them (2%) with severity grade III and five of them (3.4%) with severity grade IV elevations (as defined by the AIDS Clinical Trials Group). Three patients presented with fulminant hepatitis. One death (0.7%) was recorded. Conclusions HBV reactivation leading to liver dysfunction may be an under-reported consequence of 3TC withdrawal in HIV-HBV co-infected patients. Regular monitoring of HBV markers is warranted if active therapy against HBV is discontinued.
Resumo:
BACKGROUND: Tissues are endowed with protective mechanisms to counteract chronic ischemia. Previous studies have demonstrated that endogenous heme oxygenase (HO)-1 may protect parenchymal tissue from inflammation- and reoxygenation-induced injury. Nothing is known, however, on whether endogenous HO-1 also plays a role in chronic ischemia to protect from development of tissue necrosis. The aim of this study is, therefore, to evaluate in vivo whether endogenous HO-1 exerts protection on chronically ischemic musculocutaneous tissue, and whether this protection is mediated by an attenuation of the microcirculatory dysfunction. MATERIALS AND METHODS: In C57BL/6-mice, a chronically ischemic flap was elevated and fixed into a dorsal skinfold chamber. In a second group, tin-protoporphyrin-IX was administrated to competitively block the action of HO-1. Animals without flap elevation served as controls. With the use of intravital fluorescence microscopy, microcirculation, apoptotic cell death, and tissue necrosis were analyzed over a 10-day observation period. The time course of HO-1 expression was determined by Western blotting. RESULTS: Chronic ischemia induced an increase of HO-1 expression, particularly at day 1 and 3. This was associated with arteriolar dilation and hyperperfusion, which was capable of maintaining an adequate capillary perfusion density in the critically perfused central part of the flap, demarcating the distal necrosis. Inhibition of endogenous HO-1 by tin-protoporphyrin-IX completely abrogated arteriolar dilation (44.6 +/- 6.2 microm versus untreated flaps: 71.3 +/- 7.3 microm; P < 0.05) and hyperperfusion (3.13 +/- 1.29 nL/s versus 8.55 +/- 3.56 nL/s; P < 0.05). This resulted in a dramatic decrease of functional capillary density (16 +/- 16 cm/cm(2)versus 84 +/- 31 cm/cm(2); P < 0.05) and a significant increase of apoptotic cell death (585 +/- 51 cells/mm(2)versus 365 +/- 53 cells/mm(2); P < 0.05), and tissue necrosis (73% +/- 5% versus 51% +/- 5%; P < 0.001). CONCLUSION: Thus, our results suggest that chronic ischemia-induced endogenous HO-1 protects ischemically endangered tissue, probably by the vasodilatory action of the HO-1-associated carbon monoxide.
Resumo:
Psychosocial stress might increase the risk of atherothrombotic events by setting off an elevation in circulating levels of the proinflammatory cytokine interleukin (IL)-6. We investigated the effect of aspirin and propranolol on the responsiveness of plasma IL-6 levels to acute psychosocial stress. For 5 days, 64 healthy subjects were randomized, double-blind, to daily oral aspirin 100mg plus long-acting propranolol 80 mg, aspirin 100mg plus placebo, long-acting propranolol 80 mg plus placebo, or placebo plus placebo. Thereafter, all subjects underwent the 13-min Trier Social Stress Test, which combines a preparation phase, a job interview, and a mental arithmetic task. Plasma IL-6 levels were measured in blood samples collected immediately pre- and post-stress, and 45 min and 105 min thereafter. The change in IL-6 from pre-stress to 105 min post-stress differed between subjects with aspirin medication and those without (p =0.033; eta p2=0.059). IL-6 levels increased less from pre-stress to 105 min post-stress (p <0.027) and were lower (p =0.010) at 105 min post-stress in subjects with aspirin than in subjects without aspirin. The significance of these results was maintained when controlling for gender, age, waist-to-hip ratio, mean arterial blood pressure, and smoking status. Medication with propranolol was not significantly associated with the stress-induced change in IL-6 levels. Also, aspirin and propranolol did not significantly interact in determining the IL-6 stress response. Aspirin but not propranolol attenuated the stress-induced increase in plasma IL-6 levels. This suggests one mechanism by which aspirin treatment might reduce the risk of atherothrombotic events triggered by acute mental stress.
Resumo:
During a mammary immune response, the integrity of the blood-milk barrier is negatively affected and becomes leaky. The aim of the present study was to demonstrate the blood origin, and to investigate changes in the concentration, of various constituents including immunoglobulins in blood and milk during the early phase of lipopolysaccharide (LPS)-induced mastitis. Five lactating dairy cows received continuous β-hydroxybutyrate (BHBA) clamp infusions to maintain elevated BHBA blood concentrations (1.5 to 2.0 mmol/L) from 48 h before and 8h after LPS administration. One udder quarter was infused with 200 μg of Escherichia coli LPS. A second quarter served as control. Milk and blood samples were taken hourly for 8h postchallenge (PC). The somatic cell count in LPS-challenged quarters was increased from 4h PC to the end of the experiment compared with control quarters. In LPS-challenged quarters, l-lactate, BHBA, lactate dehydrogenase (LDH), IgG(1), and IgG(2) were increased at 3h PC and remained elevated until the end of experiment (8h PC) compared with control quarters. In addition, the optical density values in milk in a nonquantitative ELISA for antibodies directed against bluetongue virus (used as a measure of nonspecific antibody transfer; all animals were vaccinated) increased and, thus, indicates an increase in these antibodies in response to LPS treatment. l-Lactate concentration also increased in blood 2h PC and in the milk of control quarters during the experiment from 3h PC. A second experiment was conducted in vitro to investigate a possible contribution from destructed milk cells to l-lactate concentration and activity of LDH in milk. Aliquots of milk samples (n=8) were frozen (-20°C) or disrupted with ultrasound, respectively. Freeze thawing and ultrasound treatment increased LDH in milk samples, but had no effect on l-lactate concentrations. Results suggest that intramammary infusion of LPS induces a systemic response, as evidenced by an elevation of blood l-lactate concentration. The concomitant changes of all investigated components suggest that they were blood derived. However, the increase in blood components in the milk is not necessarily supportive of the mammary immune system, and likely a side effect of reduced blood-milk barrier integrity.
Resumo:
A sustainable water resources management depends on sound information about the impacts of climate change. This information is, however, not easily derived because natural runoff variability interferes with the climate change signal. This study presents a procedure that leads to robust estimates of magnitude and Time Of Emergence (TOE) of climate-induced hydrological change that also account for the natural variability contained in the time series. Firstly, natural variability of 189 mesoscale catchments in Switzerland is sampled for 10 ENSEMBLES scenarios for the control (1984–2005) and two scenario periods (near future: 2025–2046, far future: 2074–2095) applying a bootstrap procedure. Then, the sampling distributions of mean monthly runoff are tested for significant differences with the Wilcoxon-Mann–Whitney test and for effect size with Cliff’s delta d. Finally, the TOE of a climate change induced hydrological change is determined when at least eight out of the ten hydrological projections significantly differ from natural variability. The results show that the TOE occurs in the near future period except for high-elevated catchments in late summer. The significant hydrological projections in the near future correspond, however, to only minor runoff changes. In the far future, hydrological change is statistically significant and runoff changes are substantial. Temperature change is the most important factor determining hydrological change in this mountainous region. Therefore, hydrological change depends strongly on a catchment’s mean elevation. Considering that the hydrological changes are predicted to be robust in the near future highlights the importance of accounting for these changes in water resources planning.
Resumo:
Changes in fire occurrence during the last decades in the southern Swiss Alps make knowledge on fire history essential to understand future evolution of the ecosystem composition and functioning. In this context, palaeoecology provides useful insights into processes operating at decadal-to-millennial time scales, such as the response of plant communities to intensified fire disturbances during periods of cultural change. We provide a high-resolution macroscopic charcoal and pollen series from Guèr, a well-dated peat sequence at mid-elevation (832 m.a.s.l.) in southern Switzerland, where the presence of local settlements is documented since the late Bronze Age and the Iron Age. Quantitative fire reconstruction shows that fire activity sharply increased from the Neolithic period (1–3 episodes/1000 year) to the late Bronze and Iron Age (7–9 episodes/1000 year), leading to extensive clearance of the former mixed deciduous forest (Alnus glutinosa, Betula, deciduous Quercus). The increase in anthropogenic pollen indicators (e.g. Cerealia-type, Plantago lanceolata) together with macroscopic charcoal suggests anthropogenic rather than climatic forcing as the main cause of the observed vegetation shift. Fire and controlled burning were extensively used during the late Roman Times and early Middle Ages to promote the introduction and establishment of chestnut (Castanea sativa) stands, which provided an important wood and food supply. Fire occurrence declined markedly (from 9 to 5–6 episodes/1000 year) during late Middle Ages because of fire suppression, biomass removal by human population, and landscape fragmentation. Land-abandonment during the last decades allowed forest to partly re-expand (mainly Alnus glutinosa, Betula) and fire frequency to increase.
Resumo:
Metabolic adaptations during negative energy and nutrient balance in dairy cows are thought to cause impaired immune function and hence increased risk of infectious diseases, including mastitis. Characteristic adaptations mostly occurring in early lactation are an elevation of plasma ketone bodies and free fatty acids (nonesterified fatty acids, NEFA) and diminished glucose concentration. The aim of this study was to investigate effects of elevated plasma β-hydroxybutyrate (BHBA) at simultaneously even or positive energy balance and thus normal plasma NEFA and glucose on factors related to the immune system in liver and mammary gland of dairy cows. In addition, we investigated the effect of elevated plasma BHBA and intramammary lipopolysaccharide (LPS) challenge on the mammary immune response. Thirteen dairy cows were infused either with BHBA (HyperB, n=5) to induce hyperketonemia (1.7 mmol/L) or with a 0.9% saline solution (NaCl, n=8) for 56 h. Two udder quarters were injected with 200 μg of LPS after 48 h of infusion. Rectal temperature (RT) and somatic cell counts (SCC) were measured before, at 48 h after the start of infusions, and hourly during the LPS challenge. The mRNA abundance of factors related to the immune system was measured in hepatic and mammary tissue biopsies 1 wk before and 48 h after the start of the infusion, and additionally in mammary tissue at 56 h of infusion (8h after LPS administration). At 48 h of infusion in HyperB, the mRNA abundance of serum amyloid A (SAA) in the mammary gland was increased and that of haptoglobin (Hp) tended to be increased. Rectal temperature, SCC, and mRNA abundance of candidate genes in the liver were not affected by the BHBA infusion until 48 h. During the following LPS challenge, RT and SCC increased in both groups. However, SCC increased less in HyperB than in NaCl. Quarters infused with LPS showed a more pronounced increase of mRNA abundance of IL-8 and IL-10 in HyperB than in NaCl. The results demonstrate that an increase of plasma BHBA upregulates acute phase proteins in the mammary gland. In response to intramammary LPS challenge, elevated BHBA diminishes the influx of leukocytes from blood into milk, perhaps by via modified cytokine synthesis. Results indicate that increased ketone body plasma concentrations may play a crucial role in the higher mastitis susceptibility in early lactation.
Resumo:
Aim Our aims were to compare the composition of testate amoeba (TA) communities from Santa Cruz Island, Galápagos Archipelago, which are likely in existence only as a result of anthropogenic habitat transformation, with similar naturally occurring communities from northern and southern continental peatlands. Additionally, we aimed at assessing the importance of niche-based and dispersal-based processes in determining community composition and taxonomic and functional diversity. Location The humid highlands of the central island of Santa Cruz, Galápagos Archipelago. Methods We survey the alpha, beta and gamma taxonomic and functional diversities of TA, and the changes in functional traits along a gradient of wet to dry habitats. We compare the TA community composition, abundance and frequency recorded in the insular peatlands with that recorded in continental peatlands of Northern and Southern Hemispheres. We use generalized linear models to determine how environmental conditions influence taxonomic and functional diversity as well as the mean values of functional traits within communities. We finally apply variance partitioning to assess the relative importance of niche- and dispersal-based processes in determining community composition. Results TA communities in Santa Cruz Island were different from their Northern Hemisphere and South American counterparts with most genera considered as characteristic for Northern Hemisphere and South American Sphagnum peatlands missing or very rare in the Galápagos. Functional traits were most correlated with elevation and site topography and alpha functional diversity to the type of material sampled and site topography. Community composition was more strongly correlated with spatial variables than with environmental ones. Main conclusions TA communities of the Sphagnum peatlands of Santa Cruz Island and the mechanisms shaping these communities contrast with Northern Hemisphere and South American peatlands. Soil moisture was not a strong predictor of community composition most likely because rainfall and clouds provide sufficient moisture. Dispersal limitation was more important than environmental filtering because of the isolation of the insular peatlands from continental ones and the young ecological history of these ecosystems.