26 resultados para Individual bedload transport event

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

40.00% 40.00%

Publicador:

Resumo:

River bedload surveyed at 50 sites in Westland is dominated by Alpine Schist or Torlesse Greywacke from the Alpine Fault hanging wall, with subordinate Pounamu Ultramafics or footwall-derived Western Province rocks. Tumbling experiments found ultramafics to have the lowest attrition rates, compared with greywacke sandstone and granite (which abrade to produce silt to medium-sand), or incompetent schist (which fragments). Arahura has greater total concentrations (103–105 t/km2) and proportions (5–40%) of ultramafic bedload compared with Hokitika and Taramakau catchments (101–104 t/km2, mostly <10%), matching relative areas of mapped Pounamu Ultramafic bedrock, but enriched relative to absolute areal proportions. Western Province rocks downthrown by the Alpine Fault are under-represented in the bedload. Enriched concentrations of ultramafic bedload decrease rapidly with distance downstream from source rock outcrops, changing near prominent ice-limit moraines. Bedload evolution with transport involves both downstream fining and dilution from tributaries, in a sediment supply regime more strongly influenced by tectonics and the imprint of past glaciation. Treasured New Zealand pounamu (jade) is associated with ultramafic rocks. Chances of discovery vary between catchments, are increased near glacial moraines, and are highest near source-rock outcrops in remote mountain headwaters.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Recent advances have revealed that during exogenous airway challenge, airway diameters can not be adequately predicted by their initial diameters. Furthermore, airway diameters can also vary greatly in time on scales shorter than a breath. In order to better understand these phenomena, we developed a multiscale model which allows us to simulate aerosol challenge in the airways during ventilation. The model incorporates agonist-receptor binding kinetics to govern the temporal response of airway smooth muscle (ASM) contraction on individual airway segments, which together with airway wall mechanics, determines local airway caliber. Global agonist transport and deposition is coupled with pressure-driven flow, linking local airway constrictions with global flow dynamics. During the course of challenge, airway constriction alters the flow pattern, redistributing agonist to less constricted regions. This results in a negative feedback which may be a protective property of the normal lung. As a consequence, repetitive challenge can cause spatial constriction patterns to evolve in time, resulting in a loss of predictability of airway diameters. Additionally, the model offers new insight into several phenomena including the intra- and inter-breath dynamics of airway constriction throughout the tree structure.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We compare modeled oceanic carbon uptake in response to pulse CO2 emissions using a suite of global ocean models and Earth system models. In response to a CO2 pulse emission of 590 Pg C (corresponding to an instantaneous doubling of atmospheric CO2 from 278 to 556 ppm), the fraction of CO2 emitted that is absorbed by the ocean is: 37±8%, 56±10%, and 81±4% (model mean ±2σ ) in year 30, 100, and 1000 after the emission pulse, respectively. Modeled oceanic uptake of pulse CO2 on timescales from decades to about a century is strongly correlated with simulated present-day uptake of chlorofluorocarbons (CFCs) and CO2 across all models, while the amount of pulse CO2 absorbed by the ocean from a century to a millennium is strongly correlated with modeled radiocarbon in the deep Southern and Pacific Ocean. However, restricting the analysis to models that are capable of reproducing observations within uncertainty, the correlation is generally much weaker. The rates of surface-to-deep ocean transport are determined for individual models from the instantaneous doubling CO2 simulations, and they are used to calculate oceanic CO2 uptake in response to pulse CO2 emissions of different sizes pulses of 1000 and 5000 Pg C. These results are compared with simulated oceanic uptake of CO2 by a number of models simulations with the coupling of climate-ocean carbon cycle and without it. This comparison demonstrates that the impact of different ocean transport rates across models on oceanic uptake of anthropogenic CO2 is of similar magnitude as that of climate-carbon cycle feedbacks in a single model, emphasizing the important role of ocean transport in the uptake of anthropogenic CO2.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The milk-producing alveolar epithelial cells secrete milk that remains after birth the principal source of nutrients for neonates. Milk secretion and composition are highly regulated processes via integrated actions of hormones and local factors which involve specific receptors and downstream signal transduction pathways. Overall milk composition is similar among mammalian species, although the content of individual constituents such as lipids may significantly differ from one species to another. The milk lipid fraction is essentially composed of triglycerides, which represent more than 95 % of the total lipids in human and commercialized bovine milk. Though sterols, including cholesterol, which is the major milk sterol, represent less than 0.5 % of the total milk lipid fraction, they are of key importance for several biological processes. Cholesterol is required for the formation of biological membranes especially in rapidly growing organisms, and for the synthesis of sterol-based compounds. Cholesterol found in milk originates predominantly from blood uptake and, to a certain extent, from local synthesis in the mammary tissue. The present review summarizes current knowledge on cellular mechanisms and regulatory processes determining intra- and transcellular cholesterol transport in the mammary gland. Cholesterol exchanges between the blood, the mammary alveolar cells and the milk, and the likely role of active cholesterol transporters in these processes are discussed. In this context, the hormonal regulation and signal transduction pathways promoting active cholesterol transport as well as potential regulatory crosstalks are highlighted.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Introduction. Prospective Memory (PM), defined as the ability to remember to perform intended activities at some point in the future (Kliegel & Jäger, 2007), is crucial to succeed in everyday life. PM seems to increase over the childhood years (Zimmermann & Meier, 2006), but yet little is known about PM competences in children in general, but also about factors that influence its development. Currently, a number of studies has focused on factors that might influence PM performance, with EF being potentially influencing mechanisms (Ford, Driscoll, Shum & Macaulay, 2012; Mahy & Moses, 2011). Also metacognitive processes (MC: monitoring and control) are assumed to be involved while learning or optimizing one’s performance (Krebs & Roebers, 2010; 2012; Roebers, Schmid, & Roderer, 2009). Yet, the empirical relation between PM, EF and MC remains rather unclear. We intend to examine relations and explain individual differences in PM performance. Method. An empirical cross-sectional study on 120 2nd graders will be presented. Participants completed six EF tasks (a Stroop, two Updating Tasks, two Shifting Tasks, a Flanker Task), a computerised event-based PM Task and a MC spelling task. Children were tested individually in two sessions of 30 minutes each. Each of the three EF components defined by Miyake, Friedman, Emerson, Witzki & Howerter (2002) was represented by two variables. PM performance was represented by PM accuracy. Metacognitive processes (control, monitoring) were represented separately. Results. Preliminary analyses (SEM) indicate a substantial association between EF (updating, inhibition) and PM. Further, MC seems to be significantly related only to EF. We will explore whether metacognitive monitoring is related to PM monitoring (Roebers, 2002; Mantylä, 2007). As to EF and MC, we expect the two domains to be empirically well distinguishable and nevertheless substantially interrelated. Discussion. The results are discussed on a broader and interindividual level.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Modern mixed alluvial-bedrock channels in mountainous areas provide natural laboratories for understanding the time scales at which coarse-grained material has been entrained and transported from their sources to the adjacent sedimentary sink, where these deposits are preserved as conglomerates. This article assesses the shear stress conditions needed for the entrainment of the coarse-bed particles in the Glogn River that drains the 400 km2 Val Lumnezia basin, eastern Swiss Alps. In addition, quantitative data are presented on sediment transport patterns in this stream. The longitudinal stream profile of this river is characterized by three ca 500 m long knickzones where channel gradients range from 0·02 to 0·2 m m−1, and where the valley bottom confined into a <10 m wide gorge. Downstream of these knickzones, the stream is flat with gradients <0·01 m m−1 and widths ≥30 m. Measurements of the grain-size distribution along the trunk stream yield a mean D84 value of ca 270 mm, whereas the mean D50 is ca 100 mm. The consequences of the channel morphology and the grain-size distribution for the time scales of sediment transport were explored by using a one-dimensional step-backwater hydraulic model (Hydrologic Engineering Centre – River Analysis System). The results reveal that, along the entire trunk stream, a two to 10 year return period flood event is capable of mobilizing both the D50 and D84 fractions where the Shields stress exceeds the critical Shields stress for the initiation of particle motion. These return periods, however, varied substantially depending on the channel geometry and the pebble/boulder size distribution of the supplied material. Accordingly, the stream exhibits a highly dynamic boulder cover behaviour. It is likely that these time scales might also have been at work when coarse-grained conglomerates were constructed in the geological past.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Water-conducting faults and fractures were studied in the granite-hosted A¨ spo¨ Hard Rock Laboratory (SE Sweden). On a scale of decametres and larger, steeply dipping faults dominate and contain a variety of different fault rocks (mylonites, cataclasites, fault gouges). On a smaller scale, somewhat less regular fracture patterns were found. Conceptual models of the fault and fracture geometries and of the properties of rock types adjacent to fractures were derived and used as input for the modelling of in situ dipole tracer tests that were conducted in the framework of the Tracer Retention Understanding Experiment (TRUE-1) on a scale of metres. After the identification of all relevant transport and retardation processes, blind predictions of the breakthroughs of conservative to moderately sorbing tracers were calculated and then compared with the experimental data. This paper provides the geological basis and model calibration, while the predictive and inverse modelling work is the topic of the companion paper [J. Contam. Hydrol. 61 (2003) 175]. The TRUE-1 experimental volume is highly fractured and contains the same types of fault rocks and alterations as on the decametric scale. The experimental flow field was modelled on the basis of a 2D-streamtube formalism with an underlying homogeneous and isotropic transmissivity field. Tracer transport was modelled using the dual porosity medium approach, which is linked to the flow model by the flow porosity. Given the substantial pumping rates in the extraction borehole, the transport domain has a maximum width of a few centimetres only. It is concluded that both the uncertainty with regard to the length of individual fractures and the detailed geometry of the network along the flowpath between injection and extraction boreholes are not critical because flow is largely one-dimensional, whether through a single fracture or a network. Process identification and model calibration were based on a single uranine breakthrough (test PDT3), which clearly showed that matrix diffusion had to be included in the model even over the short experimental time scales, evidenced by a characteristic shape of the trailing edge of the breakthrough curve. Using the geological information and therefore considering limited matrix diffusion into a thin fault gouge horizon resulted in a good fit to the experiment. On the other hand, fresh granite was found not to interact noticeably with the tracers over the time scales of the experiments. While fracture-filling gouge materials are very efficient in retarding tracers over short periods of time (hours–days), their volume is very small and, with time progressing, retardation will be dominated by altered wall rock and, finally, by fresh granite. In such rocks, both porosity (and therefore the effective diffusion coefficient) and sorption Kds are more than one order of magnitude smaller compared to fault gouge, thus indicating that long-term retardation is expected to occur but to be less pronounced.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Safe disposal of toxic wastes in geologic formations requires minimal water and gas movement in the vicinity of storage areas, Ventilation of repository tunnels or caverns built in solid rock can desaturate the near field up to a distance of meters from the rock surface, even when the surrounding geological formation is saturated and under hydrostatic pressures. A tunnel segment at the Grimsel test site located in the Aare granite of the Bernese Alps (central Switzerland) has been subjected to a resaturation and, subsequently, to a controlled desaturation, Using thermocouple psychrometers (TP) and time domain reflectometry (TDR), the water potentials psi and water contents theta were measured within the unsaturated granodiorite matrix near the tunnel wall at depths between 0 and 160 cm. During the resaturation the water potentials in the first 30 cm from the rock surface changed within weeks from values of less than -1.5 MPa to near saturation. They returned to the negative initial values during desaturation, The dynamics of this saturation-desaturation regime could be monitored very sensitively using the thermocouple psychrometers, The TDR measurements indicated that water contents changed dose to the surface, but at deeper installation depths the observed changes were within the experimental noise. The field-measured data of the desaturation cycle were used to test the predictive capabilities of the hydraulic parameter functions that were derived from the water retention characteristics psi(theta) determined in the laboratory. A depth-invariant saturated hydraulic conductivity k(s) = 3.0 x 10(-11) m s(-1) was estimated from the psi(t) data at all measurement depths, using the one-dimensional, unsaturated water flow and transport model HYDRUS Vogel er al., 1996, For individual measurement depths, the estimated k(s) varied between 9.8 x 10(-12) and 6.1 x 10(-11) The fitted k(s) values fell within the range of previously estimated k(s) for this location and led to a satisfactory description of the data, even though the model did not include transport of water vapor.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Rapid changes in atmospheric methane (CH4), temperature and precipitation are documented by Greenland ice core data both for glacial times (the so called Dansgaard-Oeschger (D-O) events) as well as for a cooling event in the early Holocene (the 8.2 kyr event). The onsets of D-O warm events are paralleled by abrupt increases in CH4 by up to 250 ppb in a few decades. Vice versa, the 8.2 kyr event is accompanied by an intermittent decrease in CH4 of about 80 ppb over 150 yr. The abrupt CH4 changes are thought to mainly originate from source emission variations in tropical and boreal wet ecosystems, but complex process oriented bottom-up model estimates of the changes in these ecosystems during rapid climate changes are still missing. Here we present simulations of CH4 emissions from northern peatlands with the LPJ-Bern dynamic global vegetation model. The model represents CH4 production and oxidation in soils and transport by ebullition, through plant aerenchyma, and by diffusion. Parameters are tuned to represent site emission data as well as inversion-based estimates of northern wetland emissions. The model is forced with climate input data from freshwater hosing experiments using the NCAR CSM1.4 climate model to simulate an abrupt cooling event. A concentration reduction of ~10 ppb is simulated per degree K change of mean northern hemispheric surface temperature in peatlands. Peatland emissions are equally sensitive to both changes in temperature and in precipitation. If simulated changes are taken as an analogy to the 8.2 kyr event, boreal peatland emissions alone could only explain 23 of the 80 ppb decline in atmospheric methane concentration. This points to a significant contribution to source changes from low latitude and tropical wetlands to this event.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The reconstruction of past flash floods in ungauged basins leads to a high level of uncertainty, which increases if other processes are involved such as the transport of large wood material. An important flash flood occurred in 1997 in Venero Claro (Central Spain), causing significant economic losses. The wood material clogged bridge sections, raising the water level upstream. The aim of this study was to reconstruct this event, analysing the influence of woody debris transport on the flood hazard pattern. Because the reach in question was affected by backwater effects due to bridge clogging, using only high water mark or palaeostage indicators may overestimate discharges, and so other methods are required to estimate peak flows. Therefore, the peak discharge was estimated (123 ± 18 m3 s–1) using indirect methods, but one-dimensional hydraulic simulation was also used to validate these indirect estimates through an iterative process (127 ± 33 m3 s–1) and reconstruct the bridge obstruction to obtain the blockage ratio during the 1997 event (~48%) and the bridge clogging curves. Rainfall–Runoff modelling with stochastic simulation of different rainfall field configurations also helped to confirm that a peak discharge greater than 150 m3 s–1 is very unlikely to occur and that the estimated discharge range is consistent with the estimated rainfall amount (233 ± 27 mm). It was observed that the backwater effect due to the obstruction (water level ~7 m) made the 1997 flood (~35-year return period) equivalent to the 50-year flood. This allowed the equivalent return period to be defined as the recurrence interval of an event of specified magnitude, which, where large woody debris is present, is equivalent in water depth and extent of flooded area to a more extreme event of greater magnitude. These results highlight the need to include obstruction phenomena in flood hazard analysis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Rice has the predilection to take up arsenic in the form of methylated arsenic (o-As) and inorganic arsenic species (i-As). Plants defend themselves using i-As efflux systems and the production of phytochelatins (PCs) to complex i-As. Our study focused on the identification and quantification of phytochelatins by HPLC-ICP-MS/ESI-MS, relating them to the several variables linked to As exposure. GSH, 11 PCs, and As–PC complexes from the roots of six rice cultivars (Italica Carolina, Dom Sofid, 9524, Kitrana 508, YRL-1, and Lemont) exposed to low and high levels of i-As were compared with total, i-As, and o-As in roots, shoots, and grains. Only Dom Sofid, Kitrana 508, and 9524 were found to produce higher levels of PCs even when exposed to low levels of As. PCs were only correlated to i-As in the roots (r=0.884, P <0.001). However, significant negative correlations to As transfer factors (TF) roots–grains (r= –0.739, P <0.05) and shoots–grains (r= –0.541, P <0.05), suggested that these peptides help in trapping i-As but not o-As in the roots, reducing grains’ i-As. Italica Carolina reduced i-As in grains after high exposure, where some specific PCs had a special role in this reduction. In Lemont, exposure to elevated levels of i-As did not result in higher i-As levels in the grains and there were no significant increases in PCs or thiols. Finally, the high production of PCs in Kitrana 508 and Dom Sofid in response to high As treatment did not relate to a reduction of i-As in grains, suggesting that other mechanisms such as As–PC release and transport seems to be important in determining grain As in these cultivars.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The present study investigated extraversion-related individual differences in visual short-term memory (VSTM) functioning. Event related potentials were recorded from 50 introverts and 50 extraverts while they performed a VSTM task based on a color-change detection paradigm with three different set sizes. Although introverts and extraverts showed almost identical hit rates and reaction times, introverts displayed larger N1 amplitudes than extraverts independent of color change or set size. Extraverts also showed larger P3 amplitudes compared to introverts when there was a color change, whereas no extraversion-related difference in P3 amplitude was found in the no-change condition. Our findings provided the first experimental evidence that introverts' greater reactivity to punctuate physical stimulation, as indicated by larger N1 amplitude, also holds for complex visual stimulus patterns. Furthermore, P3 amplitude in the change condition was larger for extraverts than introverts suggesting higher sensitivity to context change. Finally, there were no extraversion-related differences in P3 amplitude dependent on set size. This latter finding does not support the resource allocation explanation as a source of differences between introverts and extraverts.