26 resultados para Independence working model

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

80.00% 80.00%

Publicador:

Resumo:

We used single molecule dynamic force spectroscopy to unfold individual serine/threonine antiporters SteT from Bacillus subtilis. The unfolding force patterns revealed interactions and energy barriers that stabilized structural segments of SteT. Substrate binding did not establish strong localized interactions but appeared to be facilitated by the formation of weak interactions with several structural segments. Upon substrate binding, all energy barriers of the antiporter changed thereby describing the transition from brittle mechanical properties of SteT in the unbound state to structurally flexible conformations in the substrate-bound state. The lifetime of the unbound state was much shorter than that of the substrate-bound state. This leads to the conclusion that the unbound state of SteT shows a reduced conformational flexibility to facilitate specific substrate binding and a reduced kinetic stability to enable rapid switching to the bound state. In contrast, the bound state of SteT showed an increased conformational flexibility and kinetic stability such as required to enable transport of substrate across the cell membrane. This result supports the working model of antiporters in which alternate substrate access from one to the other membrane surface occurs in the substrate-bound state.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Nonsense-mediated mRNA decay (NMD) is best known for its role in quality control of mRNAs, where it recognizes premature translation termination codons (PTCs) and rapidly degrades the corresponding mRNA. The basic mechanism of NMD appears to be conserved among eukaryotes: aberrant translation termination triggers NMD. According to the current working model, correct termination requires the interaction of the ribosome with the poly(A)-binding protein (PABPC1) mediated through the eukaryotic release factors 1 (eRF1) and 3 (eRF3). The model predicts that in the absence of this interaction, the NMD core factor UPF1 binds to eRF3 instead and initiates the events ultimately leading to mRNA degradation. However, the exact mechanism of how the decision between proper and aberrant (i.e. NMD-inducing) translation termination occurs is not yet well understood. We address this question using a tethering approach in which proteins of interest are bound to a reporter transcript into the vicinity of a PTC. Subsequently, the ability of the tethered proteins to inhibit NMD and thus stabilize the reporter transcript is assessed. Our results revealed that the C-terminal domain interacting with eRF3 seems not to be necessary for tethered PABPC1 to suppress NMD. In contrast, the N-terminal part of PABPC1, consisting of 4 RNA recognition motifs (RRMs) and interacting with eukaryotic initiation factor 4G (eIF4G), retains the ability to inhibit NMD. We find that eIF4G is able to inhibit NMD in a similar manner as PABPC1 when tethered to the reporter mRNA. This stabilization by eIF4G depends on two key interactions. One of these interactions is to PABPC1, the other is to eukaryotic initiation factor 3 (eIF3). These results confirm the importance of PABPC1 in inhibiting NMD but additionally reveal a role of translation initiation factors in the distinction between bona fide termination codons and PTCs.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Despite over 30 years of research, the molecular mechanisms of nonsense-mediated mRNA decay (NMD) are still not well understood. NMD appears to exist in most eukaryotes and is intensively studied in S. cerevisiae, C. elegans, D. melanogaster and in mammalian cells. Current evidence suggests that the core of NMD – involving UPF1, UPF2 and UPF3 – is evolutionarily conserved, but that different species may have evolved slightly different ways to identify target mRNAs for NMD and to degrade them. Our lab has shown that the exon junction complex (EJC) is not absolutely required for NMD in human cells (Bühler et al., NSMB 2006) and that it is neither restricted to CBP80-bound mRNAs as classical models claim (Rufener & Mühlemann, NSMB 2013). Together with the finding that long 3’ UTRs often are an NMD-inducing feature (Eberle et al, PLoS Biol 2008; Yepiskoposyan et al., RNA 2011), our data is consistent with much of the data from other species and hence has led to a “unified” working model for NMD (Stalder & Mühlemann, Trends Cell Biol 2008; Schweingruber et al., Biochim Biophys Acta 2013). Our recent iCLIP experiments with endogenous UPF1 indicate that UPF1 binds mRNAs indiscriminately with respect to being an NMD target or not before they engage with ribosomes (Zünd et al., NSMB 2013). After onset of translation, UPF1 is cleared from the coding region but remains bound to the 3’ UTR of mRNAs. Why this 3’ UTR-associated in some cases induces NMD and in others not is currently being investigated and not yet understood. Following assembly of a phospho-UPF1-containing NMD complex, decay adaptors (SMG5, SMG7, PNRC2) and/or the endonuclease SMG6 are recruited. While the latter cleaves the mRNA in the vicinity of the termination codon, the former proteins induce deadenylation, decapping and exonucleolytic degradation of the mRNA. In my talk, I will give an overview about the latest developments in NMD – with a focus on our own work – and try to integrate the bits and pieces into a somewhat coherent working model.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Motivation is a core concept to understand work related outcomes and vocational pursuits. However, existing research mostly focused on specific aspects of motivation, such as goals or self-efficacy beliefs, while falling short of adequately addressing more complex and integrative notions of motivation. Advancing the current state of research, we draw from Motivational Systems Theory and a model of proactive motivation to propose a comprehensive model of work-related motivation. Specifically, we define motivation as a system of mutually related factors consisting of goals, emotions, and personal agency beliefs, comprised by capability beliefs and context evaluations. Adapting this model of motivation to the school-to-work transition, we postulate that this motivational system is affected by different social, personal, and environmental variables, for example social support, the presence of role-models, personality traits, and scholastic achievement. We further expect that students with more autonomous work-related goals, expectations of more positive emotional experiences in their future working life, fewer perceived barriers to their career development, and higher work-related self-efficacy beliefs would be more successful in their transition from school to work. We also propose that goal-directed engagement acts as a partial mediator in the relationship between motivation and a successful transition. Finally, we hypothesize that work-related motivation while in school will have meaningful effects on positive outcomes while in vocational training, as represented by more work engagement, higher career commitment, job satisfaction, and lower intentions to quit training. In sum, we advance the point that the adaptation of a broader concept of work-related motivation in the school-to-work transition would result in more powerful predictions of success in this transition and would enhance scientific research and interventions in career development and counselling practice.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

OBJECTIVES The number of heart transplantations is limited by donor organ availability. Donation after circulatory determination of death (DCDD) could significantly improve graft availability; however, organs undergo warm ischaemia followed by reperfusion, leading to tissue damage. Laboratory studies suggest that mechanical postconditioning [(MPC); brief, intermittent periods of ischaemia at the onset of reperfusion] can limit reperfusion injury; however, clinical translation has been disappointing. We hypothesized that MPC-induced cardioprotection depends on fatty acid levels at reperfusion. METHODS Experiments were performed with an isolated rat heart model of DCDD. Hearts of male Wistar rats (n = 42) underwent working-mode perfusion for 20 min (baseline), 27 min of global ischaemia and 60 min reperfusion with or without MPC (two cycles of 30 s reperfusion/30 s ischaemia) in the presence or absence of high fat [(HF); 1.2 mM palmitate]. Haemodynamic parameters, necrosis factors and oxygen consumption (O2C) were assessed. Recovery rate was calculated as the value at 60 min reperfusion expressed as a percentage of the mean baseline value. The Kruskal-Wallis test was used to provide an overview of differences between experimental groups, and pairwise comparisons were performed to compare specific time points of interest for parameters with significant overall results. RESULTS Percent recovery of left ventricular (LV) work [developed pressure (DP)-heart rate product] at 60 min reperfusion was higher in hearts reperfused without fat versus with fat (58 ± 8 vs 23 ± 26%, P < 0.01) in the absence of MPC. In the absence of fat, MPC did not affect post-ischaemic haemodynamic recovery. Among the hearts reperfused with HF, two significantly different subgroups emerged according to recovery of LV work: low recovery (LoR) and high recovery (HiR) subgroups. At 60 min reperfusion, recovery was increased with MPC versus no MPC for LV work (79 ± 6 vs 55 ± 7, respectively; P < 0.05) in HiR subgroups and for DP (40 ± 27 vs 4 ± 2%), dP/dtmax (37 ± 24 vs 5 ± 3%) and dP/dtmin (33 ± 21 vs 5 ± 4%; P < 0.01 for all) in LoR subgroups. CONCLUSIONS Effects of MPC depend on energy substrate availability; MPC increased recovery of LV work in the presence, but not in the absence, of HF. Controlled reperfusion may be useful for therapeutic strategies aimed at improving post-ischaemic recovery of cardiac DCDD grafts, and ultimately in increasing donor heart availability.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Gebiet: Chirurgie Abstract: OBJECTIVES: – The number of heart transplantations is limited by donor organ availability. Donation after circulatory determination of death (DCDD) could significantly improve graft availability, however, organs undergo warm ischaemia followed by reperfusion, leading to tissue damage. Laboratory studies suggest that mechanical postconditioning [(MPC), brief, intermittent periods of ischaemia at the onset of reperfusion] can limit reperfusion injury, however, clinical translation has been disappointing. We hypothesized that MPC-induced cardioprotection depends on fatty acid levels at reperfusion. – – METHODS: – Experiments were performed with an isolated rat heart model of DCDD. Hearts of male Wistar rats (n = 42) underwent working-mode perfusion for 20 min (baseline), 27 min of global ischaemia and 60 min reperfusion with or without MPC (two cycles of 30 s reperfusion/30 s ischaemia) in the presence or absence of high fat [(HF), 1.2 mM palmitate]. Haemodynamic parameters, necrosis factors and oxygen consumption (O2C) were assessed. Recovery rate was calculated as the value at 60 min reperfusion expressed as a percentage of the mean baseline value. The Kruskal-Wallis test was used to provide an overview of differences between experimental groups, and pairwise comparisons were performed to compare specific time points of interest for parameters with significant overall results. – – RESULTS: – Percent recovery of left ventricular (LV) work [developed pressure (DP)-heart rate product] at 60 min reperfusion was higher in hearts reperfused without fat versus with fat (58 ± 8 vs 23 ± 26%, P < 0.01) in the absence of MPC. In the absence of fat, MPC did not affect post-ischaemic haemodynamic recovery. Among the hearts reperfused with HF, two significantly different subgroups emerged according to recovery of LV work: low recovery (LoR) and high recovery (HiR) subgroups. At 60 min reperfusion, recovery was increased with MPC versus no MPC for LV work (79 ± 6 vs 55 ± 7, respectively, P < 0.05) in HiR subgroups and for DP (40 ± 27 vs 4 ± 2%), dP/dtmax (37 ± 24 vs 5 ± 3%) and dP/dtmin (33 ± 21 vs 5 ± 4%, P < 0.01 for all) in LoR subgroups. – – CONCLUSIONS: – Effects of MPC depend on energy substrate availability, MPC increased recovery of LV work in the presence, but not in the absence, of HF. Controlled reperfusion may be useful for therapeutic strategies aimed at improving post-ischaemic recovery of cardiac DCDD grafts, and ultimately in increasing donor heart availability.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Working Alliance Inventory-Short Revised (WAI-SR) is a recently refined measure of the therapeutic alliance that assesses three key aspects of the therapeutic alliance: (a) agreement on the tasks of therapy, (b) agreement on the goals of therapy and (c) development of an affective bond. The WAI-SR demonstrated good psychometric properties in an initial validation in psychotherapy outpatients in the USA. The generalizability of these findings is limited because in some countries a substantial portion of individual psychotherapy is delivered in inpatient settings. This study investigated and compared the psychometric properties of the WAI-SR in German outpatients (N = 88) and inpatients (N = 243). In both samples reliability (alpha > 0.80) and convergent validity with the Helping Alliance Questionnaire were good (r > 0.64). Confirmatory factor analysis showed acceptable to good model fit for the proposed Bond-Task-Goal model in both samples. Multi-group analysis demonstrated that the same constructs were measured across settings. Alliance ratings of outpatients and inpatients differed regarding the overlap of alliance components and the magnitude of the alliance ratings: The differentiation of the alliance components was poorer in inpatients and they reported lower alliances. Unique aspects of the alliance in inpatient treatment are discussed and a need for further research on the alliance in inpatient settings is pointed out. Overall, the WAI-SR can be recommended for alliance assessment in both settings.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

OBJECTIVE: Euro-Collins solution (EC) is routinely used in lung transplantation. The high potassium of EC, however, may damage the vascular endothelium, thereby contributing to postischemic reperfusion injury. To assess the influence of the potassium concentration on lung preservation, we evaluated the effect of a "low potassium Euro-Collins solution" (LPEC), in which the sodium and potassium concentrations were reversed. METHODS: In an extracorporeal rat heart-lung model lungs were preserved with EC and LPEC. The heart-lung blocks (HLB) were perfused with Krebs-Henseleit solution containing washed bovine red blood cells and ventilated with room air. The lungs were perfused via the working right ventricle with deoxygenated perfusate. Oxygenation and pulmonary vascular resistance (PVR) were monitored. After baseline measurements, hearts were arrested with St. Thomas' solution and the lungs were perfused with EC or LPEC, or were not perfused (controls). The HLBs were stored for 5 min or 2 h ischemic time at 4 degrees C. Reperfusion and ventilation was performed for 40 min. At the end of the trial the wet/dry ratio of the lungs was calculated and light microscopic assessment of the degree of edema was performed. RESULTS: After 5 min of ischemia oxygenation was significantly better in both preserved groups compared to the controls. Pulmonary vascular resistance was elevated in all three groups after 30 min reperfusion at both ischemic times. After 2 h of ischemia PVR of the group preserved with LPEC was significantly lower than those of the EC and controls (LPEC-5 min: 184 +/- 65 dynes * sec * cm-5, EC-5 min: 275 +/- 119 dynes * sec * cm * cm-5, LPEC-2 h: 324 +/- 47 dynes * sec * m-5, EC-2 h: 507 +/- 83 dynes * sec * cm-5). Oxygenation after 2 h of ischemia and 30 min reperfusion was significantly better in the LPEC group compared to EC and controls (LPEC: 70 +/- 17 mmHg, EC: 44 +/- 3 mmHg). The wet/dry ratio was significantly lower in the two preserved groups compared to controls (LPEC-5 min: 5.7 +/- 0.7, EC-5 min: 5.8 +/- 1.2, controls-5 min: 7.5 +/- 1.8, LPEC-2 h: 6.7 +/- 0.4, EC: 6.9 +/- 0.4, controls-2 h: 7.3 +/- 0.4). CONCLUSIONS: We thus conclude that LPEC results in better oxygenation and lower PVR in this lung preservation model. A low potassium concentration in lung preservation solutions may help in reducing the incidence of early graft dysfunction following lung transplantation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Despite advances in preservation techniques for thoracic organs, the ischemic tolerance of the donor heart is still limited. Recently, a beneficial effect of oncotic substances such as dextran was shown in lung transplantation. Clinically, only in the University of Wisconsin (UW) solution oncotic substances for the prevention of cellular edema are used. Since little is known about the perspective value of dextrans in cardiac preservation, we investigated dextrans with different molecular weights added to the St. Thomas Hospital solution in an experimental working rat heart Langendorff model for functional and histological aspects. By comparison of various dextrans with molecular weights of 40,000, 70,000 and 160,000 daltons, best results were achieved by the addition of 5% dextran with the highest molecular weight.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND: Wheezing disorders in childhood vary widely in clinical presentation and disease course. During the last years, several ways to classify wheezing children into different disease phenotypes have been proposed and are increasingly used for clinical guidance, but validation of these hypothetical entities is difficult. METHODOLOGY/PRINCIPAL FINDINGS: The aim of this study was to develop a testable disease model which reflects the full spectrum of wheezing illness in preschool children. We performed a qualitative study among a panel of 7 experienced clinicians from 4 European countries working in primary, secondary and tertiary paediatric care. In a series of questionnaire surveys and structured discussions, we found a general consensus that preschool wheezing disorders consist of several phenotypes, with a great heterogeneity of specific disease concepts between clinicians. Initially, 24 disease entities were described among the 7 physicians. In structured discussions, these could be narrowed down to three entities which were linked to proposed mechanisms: a) allergic wheeze, b) non-allergic wheeze due to structural airway narrowing and c) non-allergic wheeze due to increased immune response to viral infections. This disease model will serve to create an artificial dataset that allows the validation of data-driven multidimensional methods, such as cluster analysis, which have been proposed for identification of wheezing phenotypes in children. CONCLUSIONS/SIGNIFICANCE: While there appears to be wide agreement among clinicians that wheezing disorders consist of several diseases, there is less agreement regarding their number and nature. A great diversity of disease concepts exist but a unified phenotype classification reflecting underlying disease mechanisms is lacking. We propose a disease model which may help guide future research so that proposed mechanisms are measured at the right time and their role in disease heterogeneity can be studied.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Many methodologies dealing with prediction or simulation of soft tissue deformations on medical image data require preprocessing of the data in order to produce a different shape representation that complies with standard methodologies, such as mass–spring networks, finite element method s (FEM). On the other hand, methodologies working directly on the image space normally do not take into account mechanical behavior of tissues and tend to lack physics foundations driving soft tissue deformations. This chapter presents a method to simulate soft tissue deformations based on coupled concepts from image analysis and mechanics theory. The proposed methodology is based on a robust stochastic approach that takes into account material properties retrieved directly from the image, concepts from continuum mechanics and FEM. The optimization framework is solved within a hierarchical Markov random field (HMRF) which is implemented on the graphics processor unit (GPU See Graphics processing unit ).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

For popular software systems, the number of daily submitted bug reports is high. Triaging these incoming reports is a time consuming task. Part of the bug triage is the assignment of a report to a developer with the appropriate expertise. In this paper, we present an approach to automatically suggest developers who have the appropriate expertise for handling a bug report. We model developer expertise using the vocabulary found in their source code contributions and compare this vocabulary to the vocabulary of bug reports. We evaluate our approach by comparing the suggested experts to the persons who eventually worked on the bug. Using eight years of Eclipse development as a case study, we achieve 33.6\% top-1 precision and 71.0\% top-10 recall.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

On the basis of a multi-proxy approach and a strategy combining lacustrine and marine records along a north–south transect, data collected in the central Mediterranean within the framework of a collaborative project have led to reconstruction of high-resolution and well-dated palaeohydrological records and to assessment of their spatial and temporal coherency. Contrasting patterns of palaeohydrological changes have been evidenced in the central Mediterranean: south (north) of around 40° N of latitude, the middle part of the Holocene was characterised by lake-level maxima (minima), during an interval dated to ca. 10 300–4500 cal BP to the south and 9000–4500 cal BP to the north. Available data suggest that these contrasting palaeohydrological patterns operated throughout the Holocene, both on millennial and centennial scales. Regarding precipitation seasonality, maximum humidity in the central Mediterranean during the middle part of the Holocene was characterised by humid winters and dry summers north of ca. 40° N, and humid winters and summers south of ca. 40° N. This may explain an apparent conflict between palaeoclimatic records depending on the proxies used for reconstruction as well as the synchronous expansion of tree species taxa with contrasting climatic requirements. In addition, south of ca. 40° N, the first millennium of the Holocene was characterised by very dry climatic conditions not only in the eastern, but also in the central- and the western Mediterranean zones as reflected by low lake levels and delayed reforestation. These results suggest that, in addition to the influence of the Nile discharge reinforced by the African monsoon, the deposition of Sapropel 1 has been favoured (1) by an increase in winter precipitation in the northern Mediterranean borderlands, and (2) by an increase in winter and summer precipitation in the southern Mediterranean area. The climate reversal following the Holocene climate optimum appears to have been punctuated by two major climate changes around 7500 and 4500 cal BP. In the central Mediterranean, the Holocene palaeohydrological changes developed in response to a combination of orbital, ice-sheet and solar forcing factors. The maximum humidity interval in the south-central Mediterranean started ca. 10 300 cal BP, in correlation with the decline (1) of the possible blocking effects of the North Atlantic anticyclone linked to maximum insolation, and/or (2) of the influence of the remnant ice sheets and fresh water forcing in the North Atlantic Ocean. In the north-central Mediterranean, the lake-level minimum interval began only around 9000 cal BP when the Fennoscandian ice sheet disappeared and a prevailing positive NAO-(North Atlantic Oscillation) type circulation developed in the North Atlantic area. The major palaeohydrological oscillation around 4500–4000 cal BP may be a non-linear response to the gradual decrease in insolation, with additional key seasonal and interhemispheric changes. On a centennial scale, the successive climatic events which punctuated the entire Holocene in the central Mediterranean coincided with cooling events associated with deglacial outbursts in the North Atlantic area and decreases in solar activity during the interval 11 700–7000 cal BP, and to a possible combination of NAO-type circulation and solar forcing since ca. 7000 cal BP onwards. Thus, regarding the centennial-scale climatic oscillations, the Mediterranean Basin appears to have been strongly linked to the North Atlantic area and affected by solar activity over the entire Holocene. In addition to model experiments, a better understanding of forcing factors and past atmospheric circulation patterns behind the Holocene palaeohydrological changes in the Mediterranean area will require further investigation to establish additional high-resolution and well-dated records in selected locations around the Mediterranean Basin and in adjacent regions. Special attention should be paid to greater precision in the reconstruction, on millennial and centennial timescales, of changes in the latitudinal location of the limit between the northern and southern palaeohydrological Mediterranean sectors, depending on (1) the intensity and/or characteristics of climatic periods/oscillations (e.g. Holocene thermal maximum versus Neoglacial, as well as, for instance, the 8.2 ka event versus the 4 ka event or the Little Ice Age); and (2) on varying geographical conditions from the western to the eastern Mediterranean areas (longitudinal gradients). Finally, on the basis of projects using strategically located study sites, there is a need to explore possible influences of other general atmospheric circulation patterns than NAO, such as the East Atlantic–West Russian or North Sea–Caspian patterns, in explaining the apparent complexity of palaeoclimatic (palaeohydrological) Holocene records from the Mediterranean area.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Arsenic is a class 1 non-threshold carcinogen which is highly ubiquitous. Arsenic undergoes many different transformations (biotic or abiotic) between and within environmental compartments, leading to a number of different chemical species possessing different properties and toxicities. One specific transformation is As biotic volatilization which is coupled with As biomethylation and has been scarcely studied due to inherent sampling issues. Arsenic methylation/volatilization is also linked with methanogenesis and occurs in anaerobic environments. In China, rice straw and animal manure are very often used to produce biogas and both can contain high amounts of As, especially if the rice is grown in areas with heavy mining or smelting industries and if Roxarsone is fed to the animals. Roxarsone is an As-containing drug which is widely used in China to control coccidian intestinal parasites, to improve feed efficiency and to promote rapid growth. Previous work has shown that this compound degrades to inorganic As under anaerobic conditions. In this study the focus is on biotic transformations of As in small microcosms designed as biogas digester models (BDMs) using recently validated As traps, thus, enabling direct quantification and identification of volatile As species. It is shown that although there was a loss of soluble As in the BDMs, their conditions favored biomethylation. All reactors produced volatile As, especially the monomethylarsonic acid spiked ones with 413 ± 148 ng As (mean ± SD, n = 3) which suggest that the first methylation step, from inorganic As, is a limiting factor. The most abundant species was trimethylarsine, but the toxic arsine was present in the headspace of most of the BDMs. The results suggest that volatile As species should be monitored in biogas digesters in order to assess risks to humans working in biogas plants and those utilizing the biogas.