59 resultados para Increasing Processes with Independent Increments
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
By means of fixed-links modeling the present study assessed processes involved in visual short-term memory functioning and investigates how these processes are related to intelligence. Using a color change detection task, short-term memory demands increased across three experimental conditions as a function of number of presented stimuli. We measured amount of information retained in visual short-term memory by hit rate as well as speed of visual short-term memory scanning by reaction time. For both measures, fixed-links modeling revealed a constant process reflecting processes irrespective of task manipulation as well as two increasing processes reflecting the increasing short-term memory demands. For visual short-term memory scanning, a negative association between intelligence and the constant process was found but no relationship between intelligence and the increasing processes. Thus, basic processing speed, rather than speed influenced by visual short-term memory demands, differentiates between high- and low-intelligent individuals. Intelligence was positively related to the experimental processes of shortterm memory retention but not to the constant process. In sum, significant associations with intelligence were only obtained when the specific processes of short-term memory were decomposed emphasizing the importance of a thorough assessment of cognitive processes when investigating their relation to intelligence.
Resumo:
AIMS Heart failure with preserved ejection fraction (HFpEF) has a different pathophysiological background compared to heart failure with reduced ejection fraction (HFrEF). Tailored risk prediction in this separate heart failure group with a high mortality rate is of major importance. Inflammation may play an important role in the pathogenesis of HFpEF because of its significant contribution to myocardial fibrosis. We therefore aimed to assess the predictive value of C-reactive protein (CRP) in patients with HFpEF. METHODS AND RESULTS Plasma levels of CRP were determined in 459 patients with HFpEF in the LUdwigshafen Risk and Cardiovascular Health (LURIC) study using a high-sensitivity assay. During a median follow-up of 9.7 years 40% of these patients died. CRP predicted all-cause mortality with an adjusted hazard ratio (HR) of 1.20 [95% confidence interval (CI) 1.02-1.40, P = 0.018] and cardiovascular mortality with a HR of 1.32 (95% CI 1.08-1.62, P = 0.005) per increase of one standard deviation. CRP was a significantly stronger mortality predictor in HFpEF patients than in a control group of 522 HFrEF patients (for interaction, P = 0.015). Furthermore, CRP added prognostic value to N-terminal pro B-type natriuretic peptide (Nt-proBNP): the lowest 5-year mortality rate of 6.8% was observed for patients in the lowest tertile of Nt-proBNP as well as CRP. The mortality risk peaked in the group combining the highest values of Nt-proBNP and CRP with a 5-year rate of 36.5%. CONCLUSION It was found that CRP was an independent and strong predictor of mortality in HFpEF. This observation may reflect immunological processes with an adverse impact on the course of HFpEF.
Resumo:
BACKGROUND We aimed to assess whether elderly patients with acute venous thromboembolism (VTE) receive recommended initial processes of care and to identify predictors of process adherence. METHODS We prospectively studied in- and outpatients aged ≥65 years with acute symptomatic VTE in a multicenter cohort study from nine Swiss university- and non-university hospitals between September 2009 and March 2011. We systematically assessed whether initial processes of care, which are recommended by the 2008 American College of Chest Physicians guidelines, were performed in each patient. We used multivariable logistic models to identify patient factors independently associated with process adherence. RESULTS Our cohort comprised 950 patients (mean age 76 years). Of these, 86% (645/750) received parenteral anticoagulation for ≥5 days, 54% (405/750) had oral anticoagulation started on the first treatment day, and 37% (274/750) had an international normalized ratio (INR) ≥2 for ≥24 hours before parenteral anticoagulation was discontinued. Overall, 35% (53/153) of patients with cancer received low-molecular-weight heparin monotherapy and 72% (304/423) of patients with symptomatic deep vein thrombosis were prescribed compression stockings. In multivariate analyses, symptomatic pulmonary embolism, hospital-acquired VTE, and concomitant antiplatelet therapy were associated with a significantly lower anticoagulation-related process adherence. CONCLUSIONS Adherence to several recommended processes of care was suboptimal in elderly patients with VTE. Quality of care interventions should particularly focus on processes with low adherence, such as the prescription of continued low-molecular-weight heparin therapy in patients with cancer and the achievement of an INR ≥2 for ≥24 hours before parenteral anticoagulants are stopped.
Resumo:
Despite major progress, currently available treatment options for patients suffering from schizophrenia remain suboptimal. Antipsychotic medication is one such option, and is helpful in acute phases of the disease. However, antipsychotics cause significant side-effects that often require additional medication, and can even trigger the discontinuation of treatment. Taken together, along with the fact that 20-30% of patients are medication-resistant, it is clear that new medical care options should be developed for patients with schizophrenia. Besides medication, an emerging option to treat psychiatric symptoms is through the use of neurofeedback. This technique has proven efficacy for other disorders and, more importantly, has also proven to be feasible in patients with schizophrenia. One of the major advantages of this approach is that it allows for the influence of brain states that otherwise would be inaccessible; i.e. the physiological markers underlying psychotic symptoms. EEG resting-state microstates are a very interesting electrophysiological marker of schizophrenia symptoms. Precisely, a specific class of resting-state microstates, namely microstate class D, has consistently been found to show a temporal shortening in patients with schizophrenia compared to controls, and this shortening is correlated with the presence positive psychotic symptoms. Under the scope of biological psychiatry, appropriate treatment of psychotic symptoms can be expected to modify the underlying physiological markers accompanying behavioral manifestations of a disease. We reason that if abnormal temporal parameters of resting-state microstates seem to be related to positive symptoms in schizophrenia, regulating this EEG feature might be helpful as a treatment for patients. The goal of this thesis was to prove the feasibility of microstate class D contribution self-regulation via neurofeedback. Given that no other study has attempted to regulate microstates via neurofeedback, we first tested its feasibility in a population of healthy subjects. In the first paper we describe the methodological characteristics of the neurofeedback protocol and its implementation. Neurofeedback performance was assessed by means of linear mixed effects modeling, which provided a complete profile of the neurofeedback’s training response within and between-subjects. The protocol included 20 training sessions, and each session contained three conditions: baseline (resting-state) and two active conditions: training (auditory feedback upon self-regulation performance) and transfer (self-regulation with no feedback). With linear modeling we obtained performance indices for each of them as follows: baseline carryover (baseline increments time-dependent) and learning and aptitude for each of the active conditions. Learning refers to the increase/decrease of the microstate class D contribution, time-dependent during each active condition, and aptitude refers to the constant difference of the microstate class D contribution between each active condition and baseline independent of time. The indices provided are discussed in terms of tailoring neurofeedback treatment to individual profiles so that it can be applied in future studies or clinical practice. In our sample of participants, neurofeedback proved feasible, as all participants at least showed positive results in one of the aforementioned learning indices. Furthermore, between-subjects we observed that the contribution of microstate class D across-sessions increased by 0.42% during baseline, 1.93% during training trials, and 1.83% during transfer. This range is expected to be effective in treating psychotic symptoms in patients. In the second paper presented in this thesis, we explored the possible predictors of neurofeedback success among psychological variables measured with questionnaires. An interesting finding was the negative correlation between “motivational incongruence” and some of the neurofeedback performance indices. Even though this finding requires replication, we discuss it in terms of the interfering effects of incompatible psychological processes with neurofeedback training requirements. In the third paper, we present a meta-analysis on all available studies that have related resting-state microstate abnormalities and schizophrenia. We obtained medium effect sizes for two microstate classes, namely C and D. Combining the meta-analysis results with the fact that microstate class D abnormalities are correlated with the presence of positive symptoms in patients with schizophrenia, these results add further support for the training of this precise microstate. Overall, the results obtained in this study encourage the implementation of this protocol in a population of patients with schizophrenia. However, future studies will have to show whether patients will be able to successfully self-regulate the contribution of microstate class D and, if so, whether this regulation will have an impact on symptomatology.
Resumo:
OBJECTIVES: To study the expression and the function of the 11beta-hydroxysteroid dehydrogenase enzyme 1 (11beta-HSD1) and 2 (11beta-HSD2) in placenta and the fetal membranes from pregnancies with intrauterine growth restriction (IUGR) and from controls. METHODS: Amnion, chorion, decidua and cotyledon were separated from placenta; mRNA was analyzed by TaqMan real-time technology and proteins by Western blot; enzyme activities were measured by the conversion of 3H-cortisol to 3H-cortisone and vice versa. RESULTS: Predominant mRNA expression (p < 0.001) was found for 11beta-HSD1 in chorion and for 11beta-HSD2 in decidua and cotyledon. In pregnancies with IUGR, 11beta-HSD1 was upregulated in chorion (mean DeltaCt 11beta-HSD:18S mRNA 193.5 vs. 103.0 in controls respectively, p < 0.05) and 11beta-HSD2 was downregulated in decidua (mean DeltaCt 11beta-HSD2:18S mRNA 0.18 vs. 15.88 in controls respectively, p < 0.05). 11beta-HSD1 protein levels were reduced in amnion and 11beta-HSD1 and 11beta-HSD2 oxidase activity in decidua and cotyledon were reduced from pregnancies with IUGR. CONCLUSION: Reduced synthesis or activity of 11beta-HSD1 or 2 in cases of IUGR is shown in some but not in all tissues. The local mRNA expression of 11beta-HSD1 in chorion may reflect a mechanism on the post-transcriptional gene regulation to stimulate the formation of cortisone in IUGR. To provoke increasing activity with oxidase stimulators could be a future therapy in cases of IUGR.
Resumo:
The northern section of the Bohemian Cretaceous Basin has been the site of intensive U exploitation with harmful impacts on groundwater quality. The understanding of groundwater flow and age distribution is crucial for the prediction of the future dispersion and impact of the contamination. State of the art tracer methods (3H, 3He, 4He, 85Kr, 39Ar and 14C) were, therefore, used to obtain insights to ageing and mixing processes of groundwater along a north–south flow line in the centre of the two most important aquifers of Cenomanian and middle Turonian age. Dating of groundwater is particularly complex in this area as: (i) groundwater in the Cenomanian aquifer is locally affected by fluxes of geogenic and biogenic gases (e.g. CO2, CH4, He) and by fossil brines in basement rocks rich in Cl and SO4; (ii) a thick unsaturated zone overlays the Turonian aquifer; (iii) a periglacial climate and permafrost conditions prevailed during the Last Glacial Maximum (LGM), and iv) the wells are mostly screened over large depth intervals. Large disagreements in 85Kr and 3H/3He ages indicate that processes other than ageing have affected the tracer data in the Turonian aquifer. Mixing with older waters (>50 a) was confirmed by 39Ar activities. An inverse modelling approach, which included time lags for tracer transport throughout the unsaturated zone and degassing of 3He, was used to estimate the age of groundwater. Best fits between model and field results were obtained for mean residence times varying from modern up to a few hundred years. The presence of modern water in this aquifer is correlated with the occurrence of elevated pollution (e.g. nitrates). An increase of reactive geochemical indicators (e.g. Na) and radiogenic 4He, and a decrease in 14C along the flow direction confirmed groundwater ageing in the deeper confined Cenomanian aquifer. Radiocarbon ages varied from a few hundred years to more than 20 ka. Initial 14C activity for radiocarbon dating was calibrated by means of 39Ar measurements. The 14C age of a sample recharged during the LGM was further confirmed by depleted stable isotope signatures and near freezing point noble gas temperature. Radiogenic 4He accumulated in groundwater with concentrations increasing linearly with 14C ages. This enabled the use of 4He to validate the dating range of 14C and extend it to other parts of this aquifer. In the proximity of faults, 39Ar in excess of modern concentrations and 14C dead CO2 sources, elevated 3He/4He ratios and volcanic activity in Oligocene to Quaternary demonstrate the influence of gas of deeper origin and impeded the application of 4He, 39Ar and 14C for groundwater dating.
Resumo:
Middle atmospheric water vapour can be used as a tracer for dynamical processes. It is mainly measured by satellite instruments and ground-based microwave radiometers. Ground-based instruments capable of measuring middle-atmospheric water vapour are sparse but valuable as they complement satellite measurements, are relatively easy to maintain and have a long lifetime. MIAWARA-C is a ground-based microwave radiometer for middle-atmospheric water vapour designed for use on measurement campaigns for both atmospheric case studies and instrument intercomparisons. MIAWARA-C's retrieval version 1.1 (v1.1) is set up in a such way as to provide a consistent data set even if the instrument is operated from different locations on a campaign basis. The sensitive altitude range for v1.1 extends from 4 hPa (37 km) to 0.017 hPa (75 km). For v1.1 the estimated systematic error is approximately 10% for all altitudes. At lower altitudes it is dominated by uncertainties in the calibration, with altitude the influence of spectroscopic and temperature uncertainties increases. The estimated random error increases with altitude from 5 to 25%. MIAWARA-C measures two polarisations of the incident radiation in separate receiver channels, and can therefore provide two measurements of the same air mass with independent instrumental noise. The standard deviation of the difference between the profiles obtained from the two polarisations is in excellent agreement with the estimated random measurement error of v1.1. In this paper, the quality of v1.1 data is assessed for measurements obtained at two different locations: (1) a total of 25 months of measurements in the Arctic (Sodankylä, 67.37° N, 26.63° E) and (2) nine months of measurements at mid-latitudes (Zimmerwald, 46.88° N, 7.46° E). For both locations MIAWARA-C's profiles are compared to measurements from the satellite experiments Aura MLS and MIPAS. In addition, comparisons to ACE-FTS and SOFIE are presented for the Arctic and to the ground-based radiometer MIAWARA for the mid-latitude campaigns. In general, all intercomparisons show high correlation coefficients, confirming the ability of MIAWARA-C to monitor temporal variations of the order of days. The biases are generally below 13% and within the estimated systematic uncertainty of MIAWARA-C. No consistent wet or dry bias is identified for MIAWARA-C. In addition, comparisons to the reference instruments indicate the estimated random error of v1.1 to be a realistic measure of the random variation on the retrieved profile between 45 and 70 km.
Resumo:
Dating past mass wasting with growth disturbances in trees is widely used in geochronology as the approach may yield dates of past process activity with up to subannual precision. Past work commonly focused on the extraction of increment cores, wedges, or stem cross sections. However, sampling has been shown to be constrained by sampling permissions, and the analysis of tree-ring samples requires considerable temporal efforts. To compensate for these shortcomings, we explore the potential of visual inspection of wound appearance for dating purposes. Based on a data set of 217 wood-penetrating wounds of known age inflicted to European larch (Larix decidua Mill.) by rockfall activity, we develop guidelines for the visual, noninvasive dating of wounds including (i) the counting of bark rings, (ii) a visual assessment of exposed wood and wound bark characteristics (such as the color and weathering status of wounds), and (iii) the relationship between wound age and tree diameter. A characterization of wounds based on photographs, randomly selected from the data set, reveals that young wounds typically can be dated with high precision, whereas dating errors gradually increase with increasing wound age. While visual dating does not reach the precision of dendrochronological dating, we clearly demonstrate that spatial patterns of and differences in rockfall activity can be reconstructed with both approaches. The introduction of visual dating approaches will facilitate fieldwork, especially in applied research, assist the conventional interpretation of tree-ring signals, and allow the reconstruction of geomorphic processes with considerably fewer temporal and financial efforts.
Resumo:
In electroweak-boson production processes with a jet veto, higher-order corrections are enhanced by logarithms of the veto scale over the invariant mass of the boson system. In this paper, we resum these Sudakov logarithms at next-to-next-to-leading logarithmic accuracy and match our predictions to next-to-leading-order (NLO) fixed-order results. We perform the calculation in an automated way, for arbitrary electroweak final states and in the presence of kinematic cuts on the leptons produced in the decays of the electroweak bosons. The resummation is based on a factorization theorem for the cross sections into hard functions, which encode the virtual corrections to the boson production process, and beam functions, which describe the low-pT emissions collinear to the beams. The one-loop hard functions for arbitrary processes are calculated using the MadGraph5_aMC@NLO framework, while the beam functions are process independent. We perform the resummation for a variety of processes, in particular for W+W− pair production followed by leptonic decays of the W bosons.