32 resultados para Incisión fluvial

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Infrared stimulated luminescence (IRSL) and post-IR IRSL are applied to small aliquots and single grains to determine the equivalent dose (De) of eleven alluvial and fluvial sediment samples collected in the Pativilca valley, Central Peru at ca. 10°S latitude. Small aliquot De distributions are rather symmetric and display over-dispersion values between 15 and 46%. Small aliquot g-values range between 4 and 8% per decade for the IRSL and 1 and 2% per decade for the post-IR IRSL signal. The single grain De distributions are highly over-dispersed with some of them skewed to higher doses, implying partial bleaching; this is especially true for the post-IR IRSL. Measurements of a modern analog reveal that residuals due to partial bleaching are present in both the IRSL as well as the post-IR IRSL signal. The g-values of individual grains exhibit a wide range with high individual uncertainties and might contribute significantly to the spread of the single grain De values, at least for the IRSL data. Electron Microprobe Analysis performed on single grains reveal that a varying K-content can be excluded as the origin of over-dispersion. Final ages for the different approaches are calculated using the Central Age Model and the Minimum Age Model (MAM). The samples are grouped into well-beached, potentially well-bleached and partially bleached according to the evaluation of the single grain distributions and the agreement of age estimates between methods. The application of the MAM to the single grain data resulted in consistent age estimates for both the fading corrected IRSL and the post-IR IRSL ages, and suggests that both approaches are suitable for dating these samples. Keywords

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the Bolivian Amazon several paleochannel generations are preserved. Their wide spectrum of morphologies clearly provides crucial information on the type and magnitude of geomorphic and hydrological changes within the drainage network of the Andean foreland. Therefore, in this study we mapped geomorphological characteristics of paleochannels, and applied radiocarbon and optically stimulated luminescence dating. Seven paleochannel generations are identified. Significant changes in sinuosity, channel widths and river pattern are observed for the successive paleochannel generations. Our results clearly reflect at least three different geomorphic and hydrological periods in the evolution of the fluvial system since the late Pleistocene. Changes in discharge and sediment load may be controlled by combinations of two interrelated mechanisms: (i) spatial changes and re-organizations of the drainage network in the upper catchment, and/or (ii) climate changes with their associated local to catchment-scale modifications in vegetation cover, and changes in discharge, inundation frequencies and magnitudes, which have likely affected the evolution of the fluvial system in the Llanos de Moxos. In summary, our study has revealed the enormous potential which geomorphic mapping and analysis combined with luminescence based chronologies hold for the reconstruction of the late Pleistocene to recent fluvial system in a large portion of Amazonia.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The potential and adaptive flexibility of population dynamic P-systems (PDP) to study population dynamics suggests that they may be suitable for modelling complex fluvial ecosystems, characterized by a composition of dynamic habitats with many variables that interact simultaneously. Using as a model a reservoir occupied by the zebra mussel Dreissena polymorpha, we designed a computational model based on P systems to study the population dynamics of larvae, in order to evaluate management actions to control or eradicate this invasive species. The population dynamics of this species was simulated under different scenarios ranging from the absence of water flow change to a weekly variation with different flow rates, to the actual hydrodynamic situation of an intermediate flow rate. Our results show that PDP models can be very useful tools to model complex, partially desynchronized, processes that work in parallel. This allows the study of complex hydroecological processes such as the one presented, where reproductive cycles, temperature and water dynamics are involved in the desynchronization of the population dynamics both, within areas and among them. The results obtained may be useful in the management of other reservoirs with similar hydrodynamic situations in which the presence of this invasive species has been documented.