9 resultados para In vivo 1H MRS

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Biochemical maturation of the brain can be studied noninvasively by (1)H magnetic resonance spectroscopy (MRS) in human infants. Detailed time courses of cerebral tissue contents are known for the most abundant metabolites only, and whether or not premature birth affects biochemical maturation of the brain is disputed. Hence, the last trimester of gestation was observed in infants born prematurely, and their cerebral metabolite contents at birth and at expected term were compared with those of fullterm infants. Successful quantitative short-TE (1)H MRS was performed in three cerebral locations in 21 infants in 28 sessions (gestational age 32-43 weeks). The spectra were analyzed with linear combination model fitting, considerably extending the range of observable metabolites to include acetate, alanine, aspartate, cholines, creatines, gamma-aminobutyrate, glucose, glutamine, glutamate, glutathione, glycine, lactate, myo-inositol, macromolecular contributions, N-acetylaspartate, N-acetylaspartylglutamate, o-phosphoethanolamine, scyllo-inositol, taurine, and threonine. Significant effects of age and location were found for many metabolites, including the previously observed neuronal maturation reflected by an increase in N-acetylaspartate. Absolute brain metabolite content in premature infants at term was not considerably different from that in fullterm infants, indicating that prematurity did not affect biochemical brain maturation substantially in the studied population, which did not include infants of extremely low birthweight.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Knowledge of the time interval from death (post-mortem interval, PMI) has an enormous legal, criminological and psychological impact. Aiming to find an objective method for the determination of PMIs in forensic medicine, 1H-MR spectroscopy (1H-MRS) was used in a sheep head model to follow changes in brain metabolite concentrations after death. Following the characterization of newly observed metabolites (Ith et al., Magn. Reson. Med. 2002; 5: 915-920), the full set of acquired spectra was analyzed statistically to provide a quantitative estimation of PMIs with their respective confidence limits. In a first step, analytical mathematical functions are proposed to describe the time courses of 10 metabolites in the decomposing brain up to 3 weeks post-mortem. Subsequently, the inverted functions are used to predict PMIs based on the measured metabolite concentrations. Individual PMIs calculated from five different metabolites are then pooled, being weighted by their inverse variances. The predicted PMIs from all individual examinations in the sheep model are compared with known true times. In addition, four human cases with forensically estimated PMIs are compared with predictions based on single in situ MRS measurements. Interpretation of the individual sheep examinations gave a good correlation up to 250 h post-mortem, demonstrating that the predicted PMIs are consistent with the data used to generate the model. Comparison of the estimated PMIs with the forensically determined PMIs in the four human cases shows an adequate correlation. Current PMI estimations based on forensic methods typically suffer from uncertainties in the order of days to weeks without mathematically defined confidence information. In turn, a single 1H-MRS measurement of brain tissue in situ results in PMIs with defined and favorable confidence intervals in the range of hours, thus offering a quantitative and objective method for the determination of PMIs.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

OBJECT: In this study, 1H magnetic resonance (MR) spectroscopy was prospectively tested as a reliable method for presurgical grading of neuroepithelial brain tumors. METHODS: Using a database of tumor spectra obtained in patients with histologically confirmed diagnoses, 94 consecutive untreated patients were studied using single-voxel 1H spectroscopy (point-resolved spectroscopy; TE 135 msec, TE 135 msec, TR 1500 msec). A total of 90 tumor spectra obtained in patients with diagnostic 1H MR spectroscopy examinations were analyzed using commercially available software (MRUI/VARPRO) and classified using linear discriminant analysis as World Health Organization (WHO) Grade I/II, WHO Grade III, or WHO Grade IV lesions. In all cases, the classification results were matched with histopathological diagnoses that were made according to the WHO classification criteria after serial stereotactic biopsy procedures or open surgery. Histopathological studies revealed 30 Grade I/II tumors, 29 Grade III tumors, and 31 Grade IV tumors. The reliability of the histological diagnoses was validated considering a minimum postsurgical follow-up period of 12 months (range 12-37 months). Classifications based on spectroscopic data yielded 31 tumors in Grade I/II, 32 in Grade III, and 27 in Grade IV. Incorrect classifications included two Grade II tumors, one of which was identified as Grade III and one as Grade IV; two Grade III tumors identified as Grade II; two Grade III lesions identified as Grade IV; and six Grade IV tumors identified as Grade III. Furthermore, one glioblastoma (WHO Grade IV) was classified as WHO Grade I/II. This represents an overall success rate of 86%, and a 95% success rate in differentiating low-grade from high-grade tumors. CONCLUSIONS: The authors conclude that in vivo 1H MR spectroscopy is a reliable technique for grading neuroepithelial brain tumors.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Proton magnetic resonance spectroscopy (MRS) allows the assessment of various cerebral metabolites non-invasively in vivo. Among 1H MRS-detectable metabolites, N-acetyl-aspartate and N-acetyl-aspartyl-glutamate (tNAA), trimethylamines (TMA), creatine and creatine phosphate (tCr), inositol (Ins) and glutamate (Gla) are of particular interest, since these moieties can be assigned to specific neuronal and glial metabolic pathways, membrane constituents, and energy metabolism. In this study on 94 subjects from a memory clinic population, 1H MRS results (single voxel STEAM: TE 20 ms, TR 1500 ms) on the above metabolites were assessed for five different brain regions in probable vascular dementia (VD), probable Alzheimer's disease (AD), and age-matched healthy controls. In both VD and AD, ratios of tNAA/tCr were decreased, which may be attributed to neuronal atrophy and loss, and Ins/tCr-ratios were increased indicating either enhanced gliosis or alteration of the cerebral inositol metabolism. However, the topographical distribution of the metabolic alterations in both diseases differed, revealing a temporoparietal pattern for AD and a global, subcortically pronounced pattern for VD. Furthermore, patients suffering from vascular dementia (VD) had remarkably enhanced TMA/tCr ratios, potentially due to ongoing degradation of myelin. Thus, the metabolic alterations obtained by 1H MRS in vivo allow insights into the pathophysiology of the different dementias and may be useful for diagnostic classification.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Postmortem decomposition of brain tissue was investigated by (1)H-magnetic resonance spectroscopy (MRS) in a sheep head model and selected human cases. Aiming at the eventual estimation of postmortem intervals in forensic medicine, this study focuses on the characterization and identification of newly observed metabolites. In situ single-voxel (1)H-MRS at 1.5 T was complemented by multidimensional homo- and heteronuclear high-resolution NMR spectroscopy of an extract of sheep brain tissue. The inclusion of spectra of model solutions in the program LC Model confirmed the assignments in situ. The first postmortem phase was characterized mainly by changes in the concentrations of metabolites usually observed in vivo and by the appearance of previously reported decay products. About 3 days postmortem, new metabolites, including free trimethylammonium, propionate, butyrate, and iso-butyrate, started to appear in situ. Since the observed metabolites and the time course is comparable in sheep and human brain tissue, the model system seems to be appropriate.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Among clinically relevant somatostatin functions, agonist-induced somatostatin receptor subtype 2 (sst(2)) internalization is a potent mechanism for tumor targeting with sst(2) affine radioligands such as octreotide. Since, as opposed to octreotide, the second generation multi-somatostatin analog SOM230 (pasireotide) exhibits strong functional selectivity, it appeared of interest to evaluate its ability to affect sst(2) internalization in vivo. Rats bearing AR42J tumors endogenously expressing somatostatin sst(2) receptors were injected intravenously with SOM230 or with the [Tyr(3), Thr(8)]-octreotide (TATE) analog; they were euthanized at various time points; tumors and pancreas were analyzed by immunohistochemistry for the cellular localization of somatostatin sst(2) receptors. SOM230-induced sst(2) internalization was also evaluated in vitro by immunofluorescence microscopy in AR42J cells. At difference to the efficient in vivo sst(2) internalization triggered by intravenous [Tyr(3), Thr(8)]-octreotide, intravenous SOM230 did not elicit sst(2) internalization: immunohistochemically stained sst(2) in AR42J tumor cells and pancreatic cells were detectable at the cell surface at 2.5min, 10min, 1h, 6h, or 24h after SOM230 injection while sst(2) were found intracellularly after [Tyr(3), Thr(8)]-octreotide injection. The inability of stimulating sst(2) internalization by SOM230 was confirmed in vitro in AR42J cells by immunofluorescence microscopy. Furthermore, SOM230 was unable to antagonize agonist-induced sst(2) internalization, neither in vivo, nor in vitro. Therefore, SOM230 does not induce sst(2) internalization in vivo or in vitro in AR42J cells and pancreas, at difference to octreotide derivatives with comparable sst(2) binding affinities. These characteristics may point towards different tumor targeting but also to different desensitization properties of clinically applied SOM230.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In spite of the facts that magnetic resonance spectroscopy (MRS) is applied as clinical tool in non-specialized institutions and that semi-automatic acquisition and processing tools can be used to produce quantitative information from MRS exams without expert information, issues of spectral quality and quality assessment are neglected in the literature of MR spectroscopy. Even worse, there is no consensus among experts on concepts or detailed criteria of quality assessment for MR spectra. Furthermore, artifacts are not at all conspicuous in MRS and can easily be taken for true, interpretable features. This article aims to increase interest in issues of spectral quality and quality assessment, to start a larger debate on generally accepted criteria that spectra must fulfil to be clinically and scientifically acceptable, and to provide a sample gallery of artifacts, which can be used to raise awareness for potential pitfalls in MRS.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

PURPOSE To study the apparent diffusivity and its directionality for metabolites of skeletal muscle in humans in vivo by (1) H magnetic resonance spectroscopy. METHODS The diffusion tensors were determined on a 3 Tesla MR system using optimized acquisition and processing methods including an adapted STEAM sequence with orientation-dependent diffusion weighting, pulse-triggering with individually adapted delays, eddy-current correction schemes, median filtering, and simultaneous prior-knowledge fitting of all related spectra. RESULTS The average apparent diffusivities, as well as the fractional anisotropies of taurine (ADCav  = 0.74 × 10(-3) s/mm(2) , FA = 0.46), creatine (ADCav  = 0.41 × 10(-3)  s/mm(2) , FA = 0.33), trimethylammonium compounds (ADCav  = 0.48 × 10(-3)  s/mm(2) , FA = 0.34), carnosine (ADCav  = 0.46 × 10(-3)  s/mm(2) , FA = 0.47), and water (ADCav  = 1.5 × 10(-3)  s/mm(2) , FA = 0.36) were estimated. The diffusivities of most metabolites and water were significantly different from each other. Diffusion was found to be anisotropic and the diffusion tensors showed tensor correlation coefficients close to 1 and were hence found to be essentially coaligned. The magnitudes of apparent metabolite diffusivities were largely ordered according to molecular weight, with taurine as the smallest molecule diffusing fastest, both along and across the fiber direction. CONCLUSION Diffusivities, directional dependence of diffusion and fractional anisotropies of (1) H MRS-visible muscle metabolites were presented. It was shown that metabolites share diffusion directionality with water and have similar fractional anisotropies, hinting at similar diffusion barriers. Magn Reson Med, 2014. © 2014 Wiley Periodicals, Inc.