11 resultados para Immune selection

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The T-cell-mediated immune response exhibits a crucial function in the control of the intrahepatic proliferation of Echinococcus multilocularis larvae in mice and humans, both being natural intermediate hosts of the parasite. Antigen B (AgB), a metabolized Echinococcus spp. lipoprotein, contributes to the modulation of the T-cell immune response, and distinct sites of the corresponding AgB1, AgB3 and AgB4 genes were shown to be under positive selection pressure. Since several AgB gene variants are present in a single Echinococcus metacestode, we used secondary E. multilocularis infections in BALB/c and in athymic nude mice (devoid of T-cell responses) to analyze the effect of the cellular immune response on the expression and diversity of EmAgB1-EmAgB4 genes. We demonstrated hereby that EmAgB transcripts were less abundant in nude mice during the early phase of infection (at one month post-infection), and that EmAgB2 is simultaneously down-regulated when compared to the other three genes. A negative relationship exists between the level of transcription and diversity of EmAgB genes. Moreover, no excess of non-synonymous substitutions was found among the distinct EmAgB alleles from a single host. Together, these results pointed to the effect of purifying selection, which seemed to eliminate the detrimental AgB variants generated during the development of the metacestode within the peritoneal cavity of its intermediate host.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND: All site-specific interactions between HIV type-1 (HIV-1) subtype, human leukocyte antigen (HLA)-associated immune selection and integrase inhibitor resistance are not completely understood. We examined naturally occurring polymorphisms in HIV-1 integrase sequences from 342 antiretroviral-naive individuals from the Western Australian HIV Cohort Study and the Swiss HIV Cohort Study. METHODS: Standard bulk sequencing and sequence-based typing were used to generate integrase sequences and high-resolution HLA genotypes, respectively. Viral residues were examined with respect to drug resistance mutations and CD8(+) T-cell escape mutations. RESULTS: In both predominantly subtype B cohorts, 12 of 38 sites that mediate integrase inhibitor resistance mutations were absolutely conserved, and these included the primary resistance mutations. There were 18 codons with non-primary drug resistance-associated substitutions at rates of up to 58.8% and eight sites with alternative polymorphisms. Five viral residues were potentially subject to dual-drug and HLA-associated immune selection in which both selective pressures either drove the same amino acid substitution (codons 72, 157 and 163) or HLA alleles were associated with an alternative polymorphism that would alter the genetic barrier to resistance (codons 125 and 193). The common polymorphism T125A, which was characteristic of non-subtype B and was also associated with carriage of HLA-B*57/*5801, increased the mutational barrier to the resistance mutation T125K. CONCLUSIONS: Primary integrase inhibitor resistance mutations were not detected in the absence of drug exposure in keeping with sites of high constraint. Viral polymorphisms caused by immune selection and/or associated with non-subtype B might alter the genetic barrier to some non-primary resistance-associated mutations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Raltegravir (RAL) achieved remarkable virologic suppression rates in randomized-clinical trials, but today efficacy data and factors for treatment failures in a routine clinical care setting are limited.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The host's immune response to hepatitis C virus (HCV) can result in the selection of characteristic mutations (adaptations) that enable the virus to escape this response. The ability of the virus to mutate at these sites is dependent on the incoming virus, the fitness cost incurred by the mutation, and the benefit to the virus in escaping the response. Studies examining viral adaptation in chronic HCV infection have shown that these characteristic immune escape mutations can be observed at the population level as human leukocyte antigen (HLA)-specific viral polymorphisms. We examined 63 individuals with chronic HCV infection who were infected from a single HCV genotype 1b source. Our aim was to determine the extent to which the host's immune pressure affects HCV diversity and the ways in which the sequence of the incoming virus, including preexisting escape mutations, can influence subsequent mutations in recipients and infection outcomes. Conclusion: HCV sequences from these individuals revealed 29 significant associations between specific HLA types within the new hosts and variations within their viruses, which likely represent new viral adaptations. These associations did not overlap with previously reported adaptations for genotypes 1a and 3a and possibly reflected a combination of constraint due to the incoming virus and genetic distance between the strains. However, these sites accounted for only a portion of the sites in which viral diversity was observed in the new hosts. Furthermore, preexisting viral adaptations in the incoming (source) virus likely influenced the outcomes in the new hosts.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND: Production of native antigens for serodiagnosis of helminthic infections is laborious and hampered by batch-to-batch variation. For serodiagnosis of echinococcosis, especially cystic disease, most screening tests rely on crude or purified Echinococcus granulosus hydatid cyst fluid. To resolve limitations associated with native antigens in serological tests, the use of standardized and highly pure antigens produced by chemical synthesis offers considerable advantages, provided appropriate diagnostic sensitivity and specificity is achieved. METHODOLOGY/PRINCIPAL FINDINGS: Making use of the growing collection of genomic and proteomic data, we applied a set of bioinformatic selection criteria to a collection of protein sequences including conceptually translated nucleotide sequence data of two related tapeworms, Echinococcus multilocularis and Echinococcus granulosus. Our approach targeted alpha-helical coiled-coils and intrinsically unstructured regions of parasite proteins potentially exposed to the host immune system. From 6 proteins of E. multilocularis and 5 proteins of E. granulosus, 45 peptides between 24 and 30 amino acids in length were designed. These peptides were chemically synthesized, spotted on microarrays and screened for reactivity with sera from infected humans. Peptides reacting above the cut-off were validated in enzyme-linked immunosorbent assays (ELISA). Peptides identified failed to differentiate between E. multilocularis and E. granulosus infection. The peptide performing best reached 57% sensitivity and 94% specificity. This candidate derived from Echinococcus multilocularis antigen B8/1 and showed strong reactivity to sera from patients infected either with E. multilocularis or E. granulosus. CONCLUSIONS/SIGNIFICANCE: This study provides proof of principle for the discovery of diagnostically relevant peptides by bioinformatic selection complemented with screening on a high-throughput microarray platform. Our data showed that a single peptide cannot provide sufficient diagnostic sensitivity whereas pooling several peptide antigens improved sensitivity; thus combinations of several peptides may lead the way to new diagnostic tests that replace, or at least complement conventional immunodiagnosis of echinococcosis. Our strategy could prove useful for diagnostic developments in other pathogens.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Low somatic cell count (SCC) is a reliable indicator of high-quality milk free of pathogenic microorganisms. Thus, an important goal in dairy practice is to produce milk with low SCC. Selection for cows with low SCC can sometimes lead to extremely low SCC in single quarters. The cells in milk are, however, predominantly immune cells with important immune functions. To investigate the mammary immune competence of quarters with very low SCC, healthy udder quarters of cows with normal SCC of (40-100) x 10(3) cells/ml and very low SCC of < 20 x 10(3) cells/ml were challenged with lipopolysaccharide (LPS) from Escherichia coli. In the first experiment, SCC and cell viability after a challenge with 50 ng of LPS/quarter was investigated. In the second experiment, tumour necrosis factor alpha (TNF-alpha) concentration and lactate dehydrogenase (LDH) activity in milk, and mRNA expression of various innate immune factors in milk cells were measured after a challenge with 100 mug LPS/quarter. LPS challenge induced an increase of SCC. SCC levels reached were higher in quarters with normal SCC and maximum SCC was reached 1 h earlier than in very low SCC quarters. The increase of TNF-alpha concentrations in milk in response to LPS challenge was lower in quarters with very low SCC than in quarters with normal SCC. The viability of cells and the LDH activity in milk increased in response to LPS challenge, however, without a difference between the groups. The mRNA expression of IL-1beta and IL-8 was increased in milk cells at 12 h after LPS challenge, whereas that of TNF-alpha and lactoferrin was not increased at the measured time points (12, 24 and 36 h after LPS challenge). No differences of mRNA expression of measured immune factors between normal and very low SCC samples were detected. The study showed that udder quarters with very low SCC responded with a less marked increase of SCC compared with quarters with normal SCC. This difference corresponded with simultaneously lower TNF-alpha concentrations in milk. However, the immune competence of the cells themselves based on mRNA expression of TNF-alpha, IL-8, IL-1beta, and lactoferrin, did not differ. The results may indicate that very low SCC can impair the immune competence of udder quarters, because the immune response in udder quarters with lower SCC is less efficient as fewer cells contribute to the production of immunoregulators.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Theory suggests that carotenoid-based signals are used in animal communication because they contain specific information about parasite resistance or immunocompetence. This implies that honesty of carotenoid-based signals is maintained by a trade-off between pigmentation and immune function for carotenoids, assuming that the carotenoids used for coloration are also immunoenhancing. We tested this hypothesis by altering the diets of nestling great tits (Paris major) with supplementary beadlets containing the carotenoids that are naturally ingested with food or beadlets containing the carotenoids that are incorporated into the feathers; a control group received beadlets containing no carotenoids. We simultaneously immune challenged half of the nestlings of each supplementation group, using a two-factorial design. Activatior of the immune system led to reduced color expression. However, only nestlings fed with the naturally ingested carotenoids and not with the carotenoids deposited in the feathers showed an increased cellular immune response. This shows that the carotenoids used for ornamentation do not promote the immune function, which conflicts with the trade-off hypothesis. Our results indicate that honesty of carotenoid-based signals is maintained by an individual's physiological limitation to absorb and/or transport carotenoids and by access to carotenoids, indicating that preferences for carotenoid-based traits in sexual selection or parent-offspring interactions select for competitive individuals, rather than specifically for immune function.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The efficacy of specifically targeted anti-viral therapy for hepatitis C virus (HCV) (STAT-C), including HCV protease and polymerase inhibitors, is limited by the presence of drug-specific viral resistance mutations within the targeted proteins. Genetic diversity within these viral proteins also evolves under selective pressures provided by host human leukocyte antigen (HLA)-restricted immune responses, which may therefore influence STAT-C treatment response. Here, the prevalence of drug resistance mutations relevant to 27 developmental STAT-C drugs, and the potential for drug and immune selective pressures to intersect at sites along the HCV genome, is explored. HCV nonstructural (NS) 3 protease or NS5B polymerase sequences and HLA assignment were obtained from study populations from Australia, Switzerland, and the United Kingdom. Four hundred five treatment-naïve individuals with chronic HCV infection were considered (259 genotype 1, 146 genotype 3), of which 38.5% were coinfected with human immunodeficiency virus (HIV). We identified preexisting STAT-C drug resistance mutations in sequences from this large cohort. The frequency of the variations varied according to individual STAT-C drug and HCV genotype/subtype. Of individuals infected with subtype 1a, 21.5% exhibited genetic variation at a known drug resistance site. Furthermore, we identified areas in HCV protease and polymerase that are under both potential HLA-driven pressure and therapy selection and identified six HLA-associated polymorphisms (P immune responses are likely to provide powerful selection forces that shape HCV genetic diversity and replication dynamics. Consideration of HCV viral adaptation in terms of drug resistance as well as host "immune resistance" in the STAT-C treatment era could provide important information toward an optimized and individualized therapy for chronic hepatitis C.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Mastitis is the most prevalent infectious disease in dairy herds. Breeding programs considering mastitis susceptibility were adopted as approaches to improve udder health status. In recent decades, conventional selection criteria based on phenotypic characteristics such as somatic cell score in milk have been widely used to select animals. Recently, approaches to incorporate molecular information have become feasible because of the detection of quantitative trait loci (QTL) affecting mastitis resistance. The aims of the study were to explore molecular mechanisms underlying mastitis resistance and the genetic mechanisms underlying a QTL on Bos taurus chromosome 18 found to influence udder health. Primary cell cultures of mammary epithelial cells from heifers that were selected for high or low susceptibility to mastitis were established. Selection based on estimated pedigree breeding value or on the basis of marker-assisted selection using QTL information was implemented. The mRNA expression of 10 key molecules of the innate immune system was measured using quantitative real-time PCR after 1, 6, and 24 h of challenge with heat-inactivated mastitis pathogens (Escherichia coli and Staphylococcus aureus) and expression levels in the high and low susceptibility groups were compared according to selection criteria. In the marker-assisted selection groups, mRNA expression in cells isolated from less-susceptible animals was significantly elevated for toll-like receptor 2, tumor necrosis factor-alpha, IL-1beta, IL-6, IL-8, RANTES (regulated upon activation, normal t-cell expressed and secreted), complement factor C3, and lactoferrin. In the estimated pedigree breeding value groups, mRNA expression was significantly elevated only for V-rel reticuloendotheliosis viral oncogene homolog A, IL-1 beta, and RANTES. These observations provide first insights into genetically determined divergent reactions to pathogens in the bovine mammary gland and indicate that the application of QTL information could be a successful tool for the selection of animals resistant to mastitis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The evolution of ants is marked by remarkable adaptations that allowed the development of very complex social systems. To identify how ant-specific adaptations are associated with patterns of molecular evolution, we searched for signs of positive selection on amino-acid changes in proteins. We identified 24 functional categories of genes which were enriched for positively selected genes in the ant lineage. We also reanalyzed genome-wide datasets in bees and flies with the same methodology, to check whether positive selection was specific to ants or also present in other insects. Notably, genes implicated in immunity were enriched for positively selected genes in the three lineages, ruling out the hypothesis that the evolution of hygienic behaviors in social insects caused a major relaxation of selective pressure on immune genes. Our scan also indicated that genes implicated in neurogenesis and olfaction started to undergo increased positive selection before the evolution of sociality in Hymenoptera. Finally, the comparison between these three lineages allowed us to pinpoint molecular evolution patterns that were specific to the ant lineage. In particular, there was ant-specific recurrent positive selection on genes with mitochondrial functions, suggesting that mitochondrial activity was improved during the evolution of this lineage. This might have been an important step toward the evolution of extreme lifespan that is a hallmark of ants.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Myxozoans evoke important economic losses in aquaculture production, but there is almost a total lack of disease control methods as no vaccines or commercial treatments are currently available. Knowledge of the immune responses that lead to myxozoan elimination and subsequent disease resistance is vital for shaping the future development of disease control measures. Different fish immune factors triggered by myxozoan parasites are reviewed in this chapter. Detailed information on the phenotypic and underlying molecular aspects of innate and adaptive responses, at both cellular and humoral levels, is provided for some well-studied fishmyxozoan systems. The importance of the local immune response, mainly at mucosal sites, is also highlighted. Myxozoan tactics to disable or avoid immune responses, such as modulation of immune gene transcription and immune evasion, are also reviewed. The existence of innate and acquired resistance to some myxozoan species suggest promising possibilities for controlling myxozooses through immune-based strategies, such as genetic selection for host resistance, vaccination, immune therapies and administration of immunostimulants.