13 resultados para Immune Recognition

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

70.00% 70.00%

Publicador:

Resumo:

We describe herein some immunological properties of human fetal bone cells recently tested for bone tissue-engineering applications. Adult mesenchymal stem cells (MSCs) and osteoblasts were included in the study for comparison. Surface markers involved in bone metabolism and immune recognition were analyzed using flow cytometry before and after differentiation or treatment with cytokines. Immunomodulatory properties were studied on activated peripheral blood mononuclear cells (PBMCs). The immuno-profile of fetal bone cells was further investigated at the gene expression level. Fetal bone cells and adult MSCs were positive for Stro-1, alkaline phosphatase, CD10, CD44, CD54, and beta2-microglobulin, but human leukocyte antigen (HLA)-I and CD80 were less present than on adult osteoblasts. All cells were negative for HLA-II. Treatment with recombinant human interferon gamma increased the presence of HLA-I in adult cells much more than in fetal cells. In the presence of activated PBMCs, fetal cells had antiproliferative effects, although with patterns not always comparable with those of adult MSCs and osteoblasts. Because of the immunological profile, and with their more-differentiated phenotype than of stem cells, fetal bone cells present an interesting potential for allogeneic cell source in tissue-engineering applications.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Drugs may stimulate the immune system by forming stable new antigenic complexes consisting of the drug or drug metabolite which is covalently bound to a protein or peptide (hapten-carrier complex). Both, B- and T-cell immunity may arise, the latter directed to hapten modified peptides presented by HLA molecules. Beside this immunological stimulation, drugs can also stimulate the immune system through binding by non-covalent bonds to proteins like immune receptors. This so-called “pharmacological interaction with immune receptors” concept (“p-i concept”) may occur with HLA or TCR molecules themselves (p-i HLA or p-i TCR), and not the immunogenic peptide. It is a type of “off-target” activity of the drug on immune receptors, but more complex as various cell types, cell interactions and functionally different T cells are involved. In this review the conditions which lead to activation of T cells by p-i are discussed: important factors for a functional consequence of drug binding is the location of binding (p-i HLA or p-i TCR); the exact site within these immune receptors; the affinity of binding and the finding that p-i HLA can stimulate the immune system like an allo-allele. The p-i concept is able to solve some puzzles of drug hypersensitivity reactions and are a basis to better treat and potentially avoid drug hypersensitivity reactions. Moreover, the p-i concept shows that in contrast to previous beliefs small molecules do interact with immune receptors with functional consequence. But these interactions are not based on “immune recognition”, are at odds with some immunological concepts, but may nevertheless open new possibilities to understand and even treat immune reactions

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Theileria annulata and T. parva are closely related protozoan parasites that cause lymphoproliferative diseases of cattle. We sequenced the genome of T. annulata and compared it with that of T. parva to understand the mechanisms underlying transformation and tropism. Despite high conservation of gene sequences and synteny, the analysis reveals unequally expanded gene families and species-specific genes. We also identify divergent families of putative secreted polypeptides that may reduce immune recognition, candidate regulators of host-cell transformation, and a Theileria-specific protein domain [frequently associated in Theileria (FAINT)] present in a large number of secreted proteins.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Larval infection with Echinococcus multilocularis starts with the intrahepatic postoncospheral development of a metacestode that-at its mature stage-consists of an inner germinal and an outer laminated layer (GL ; LL). In certain cases, an appropriate host immune response may inhibit parasite proliferation. Several lines of evidence obtained in vivo and in vitro indicate the important bio-protective role of the LL. For instance, the LL has been proposed to protect the GL from nitric oxide produced by periparasitic macrophages and dendritic cells, and also to prevent immune recognition by surrounding T cells. On the other hand, the high periparasitic NO production by peritoneal exsudate cells contributes to periparasitic immunosuppression, explaining why iNOS deficienct mice exhibit a significantly lower susceptibility towards experimental infection. The intense periparasitic granulomatous infiltration indicates a strong host-parasite interaction, and the involvement of cellular immunity in control of the metacestode growth kinetics is strongly suggested by experiments carried out in T cell deficient mouse strains. Carbohydrate components of the LL, such as Em2(G11) and Em492, as well as other parasite metabolites yield immunomodulatory effects that allow the parasite to survive in the host. I.e., the IgG response to the Em2(G11)-antigen takes place independently of alpha-beta+CD4+T cells, and in the absence of interactions between CD40 and CD40 ligand. Such parasite molecules also interfere with antigen presentation and cell activation, leading to a mixed Th1/Th2-type response at the later stage of infection. Furthermore, Em492 and other (not yet published) purified parasite metabolites suppress ConA and antigen-stimulated splenocyte proliferation. Infected mouse macrophages (AE-MØ) as antigen presenting cells (APC) exhibited a reduced ability to present a conventional antigen (chicken ovalbumin, C-Ova) to specific responder lymph node T cells when compared to normal MØ. As AE-MØ fully maintain their capacity to appropriately process antigens, a failure in T cell receptor occupancy by antigen-Ia complex or/and altered co-stimulatory signals can be excluded. Studying the status of accessory molecules implicated in T cell stimulation by MØ, it could be shown that B7-1 (CD80) and B7-2 (CD86) remained unchanged, whereas CD40 was down-regulated and CD54 (=ICAM-1) slightly up-regulated. FACS analysis of peritoneal cells revealed a decrease in the percentage of CD4+ and CD8+T cells in AE-infected mice. Taken together the obstructed presenting-activity of AE-MØ appeared to trigger an unresponsiveness of T cells leading to the suppression of their clonal expansion during the chronic phase of AE infection. Interesting information on the parasite survival strategy and potential can be obtained upon in vitro and in vivo treatment. Hence, we provided very innovative results by showing that nitazoxanide, and now also, respectively, new modified compounds may represent a useful alternative to albendazole. In the context of chemotherapeutical repression of parasite growth, we searched also for parasite molecules, whose expression levels correlate with the viability and growth activity of E. multilocularis metacestode. Expression levels of 14-3-3 and II/3-10, relatively quantified by realtime reverse transcription-PCR using a housekeeping gene beta-actin, were studied in permissive nu/nu and in low-permissive wild type BALB/c mice. At 2 months p.i., the transcription level of 14-3-3 was significantly higher in parasites actively proliferating in nu/nu mice compared to parasites moderately growing in wild type mice. Immunoblotting experiments confirmed at the protein level that 14-3-3 was over-expressed in parasites derived from nu/nu mice at 2 months p.i. In vitro-treatment of E. multilocularis with an anti-echinococcal drug nitazoxanide for a period of 8 days resulted in a significant decrease of both 14-3-3 and II/3-10 transcription levels,

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Infection with bacteria such as Chlamydia pneumonia, Helicobacter pylori or Porphyromonas gingivalis may be triggering the secretion of inflammatory cytokines that leads to atherogenesis. The mechanisms by which the innate immune recognition of these pathogens could lead to atherosclerosis remain unclear. In this study, using human vascular endothelial cells or HEK-293 cells engineered to express pattern-recognition receptors (PRRs), we set out to determine Toll-like receptors (TLRs) and functionally associated PRRs involved in the innate recognition of and response to lipopolysaccharide (LPS) from H. pylori or P. gingivalis. Using siRNA interference or recombinant expression of cooperating PRRs, we show that H. pylori and P. gingivalis LPS-induced cell activation is mediated through TLR2. Human vascular endothelial cell activation was found to be lipid raft-dependent and to require the formation of heterotypic receptor complexes comprising of TLR2, TLR1, CD36 and CD11b/CD18. In addition, we report that LPS from these bacterial strains are able to antagonize TLR4. This antagonistic activity of H. pylori or P. gingivalis LPS, as well as their TLR2 activation capability may be associated with their ability to contribute to atherosclerosis.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

OBJECTIVES: In this study we tested the hypothesis that lipopolysaccharide-binding protein (LBP) might be able to be used as a biomarker for coronary artery disease (CAD). BACKGROUND: The mechanisms by which the innate immune recognition of pathogens could lead to atherosclerosis remain unclear. Lipopolysaccharide-binding protein is the first protein to encounter lipopolysaccharide and to deliver it to its cellular targets, toll-like receptors; therefore, its presence might be a reliable biomarker that indicates activation of innate immune responses. METHODS: A total of 247 men undergoing elective coronary angiography were studied, and the extent of coronary atherosclerosis was assessed by 2 established scores: "extent score" and "severity score." Levels of LBP, markers of inflammation, and traditional risk factors for CAD were assessed. RESULTS: Serum LBP concentration was significantly increased in 172 patients with angiographically confirmed CAD compared with 75 individuals without coronary atherosclerosis (20.6 +/- 8.7 pg/ml vs. 17.1 +/- 6.0 pg/ml, respectively; p = 0.002). Moreover in multivariable logistic regression analyses, adjusted for established cardiovascular risk factors and markers of systemic inflammation, LBP was a significant and independent predictor of prevalent CAD (p < 0.05 in all models). CONCLUSIONS: Lipopolysaccharide-binding protein might serve as a novel marker for CAD in men. The present results underlie the potential importance of innate immune mechanisms for CAD. Further studies are warranted to bolster the data and to identify pathogenetic links between innate immune system activation and atherosclerosis.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Tumor budding (single tumor cells or small tumor cell clusters) at the invasion front of colorectal cancer (CRC) is an adverse prognostic indicator linked to epithelial-mesenchymal transition. This study characterized the immunogenicity of tumor buds by analyzing the expression of the major histocompatibility complex (MHC) class I in the invasive tumor cell compartment. We hypothesized that maintenance of a functional MHC-I antigen presentation pathway, activation of CD8+ T-cells, and release of antitumoral effector molecules such as cytotoxic granule-associated RNA binding protein (TIA1) in the tumor microenvironment can counter tumor budding and favor prolonged patient outcome. Therefore, a well-characterized multipunch tissue microarray of 220 CRCs was profiled for MHC-I, CD8, and TIA1 by immunohistochemistry. Topographic expression analysis of MHC-I was performed using whole tissue sections (n = 100). Kirsten rat sarcoma viral oncogene homolog (KRAS) and B-Raf proto-oncogene, serine/threonine kinase (BRAF) mutations, mismatch repair (MMR) protein expression, and CpG-island methylator phenotype (CIMP) were investigated. Our results demonstrated that membranous MHC-I expression is frequently down-regulated in the process of invasion. Maintained MHC-I at the invasion front strongly predicted low-grade tumor budding (P = 0.0004). Triple-positive MHC-I/CD8/TIA1 in the tumor microenvironment predicted early T-stage (P = 0.0031), absence of lymph node metastasis (P = 0.0348), lymphatic (P = 0.0119) and venous invasion (P = 0.006), and highly favorable 5-year survival (90.9% vs 39.3% in triple-negative patients; P = 0.0032). MHC-I loss was frequent in KRAS-mutated, CD8+ CRC (P = 0.0228). No relationship was observed with CIMP, MMR, or BRAF mutation. In conclusion, tumor buds may evade immune recognition through downregulation of membranous MHC-I. A combined profile of MHC-I/CD8/TIA1 improves the prognostic value of antitumoral effector cells and should be preferred to a single marker approach.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

BACKGROUND Tapasin is a crucial component of the major histocompatibility (MHC) class I antigen presentation pathway. Defects in this pathway can lead to tumor immune evasion. The aim of this study was to test whether tapasin expression correlates with CD8(+) cytotoxic T lymphocyte (CTL) infiltration of colorectal cancer (CRC) and overall survival. METHODS A next-generation tissue microarray (ngTMA) of 198 CRC patients with full clinicopathological information was included in this study. TMA slides were immunostained for tapasin, MHC I and CD8. Marker expression was analyzed with immune-cell infiltration, patient survival and TNM-staging. RESULTS A reduction of tapasin expression strongly correlated with venous invasion (AUC 0.682, OR 2.7, p = 0.002; 95% CI 1.7-5.0), lymphatic invasion (AUC 0.620, OR 2.0, p = 0.005; 95 % CI 1.3-3.3), distant metastasis (AUC 0.727, OR 2.9, p = 0.004; 95% CI 1.4-5.9) and an infiltrative tumor border configuration (AUC 0.621, OR 2.2, p = 0.017; 95% CI 1.2-4.4). Further, tapasin expression was associated with CD8(+) CTL infiltration (AUC 0.729, OR 5.4, p < 0.001; 95% CI 2.6-11), and favorable overall survival (p = 0.004, HR 0.6, 95% CI 0.42-0.85). CONCLUSIONS Consistent with published functional data showing that tapasin promotes antigen presentation, as well as tumor immune recognition and destruction by CD8(+) CTLs, a reduction in tapasin expression is associated with tumor progression in CRC.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Recognition of drugs by immune cells is usually explained by the hapten model, which states that endogenous metabolites bind irreversibly to protein to stimulate immune cells. Synthetic metabolites interact directly with protein-generating antigenic determinants for T cells; however, experimental evidence relating intracellular metabolism in immune cells and the generation of physiologically relevant Ags to functional immune responses is lacking. The aim of this study was to develop an integrated approach using animal and human experimental systems to characterize sulfamethoxazole (SMX) metabolism-derived antigenic protein adduct formation in immune cells and define the relationship among adduct formation, cell death, costimulatory signaling, and stimulation of a T cell response. Formation of SMX-derived adducts in APCs was dose and time dependent, detectable at nontoxic concentrations, and dependent on drug-metabolizing enzyme activity. Adduct formation above a threshold induced necrotic cell death, dendritic cell costimulatory molecule expression, and cytokine secretion. APCs cultured with SMX for 16 h, the time needed for drug metabolism, stimulated T cells from sensitized mice and lymphocytes and T cell clones from allergic patients. Enzyme inhibition decreased SMX-derived protein adduct formation and the T cell response. Dendritic cells cultured with SMX and adoptively transferred to recipient mice initiated an immune response; however, T cells were stimulated with adducts derived from SMX metabolism in APCs, not the parent drug. This study shows that APCs metabolize SMX; subsequent protein binding generates a functional T cell Ag. Adduct formation above a threshold stimulates cell death, which provides a maturation signal for dendritic cells.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Innate immunity represents the first line of defence against pathogens and plays key roles in activation and orientation of the adaptive immune response. The innate immune system comprises both a cellular and a humoral arm. Components of the humoral arm include soluble pattern recognition molecules (PRMs) that recognise pathogen-associated molecular patterns (PAMPs) and initiate the immune response in coordination with the cellular arm, therefore acting as functional ancestors of antibodies. The long pentraxin PTX3 is a prototypic soluble PRM that is produced at sites of infection and inflammation by both somatic and immune cells. Gene targeting of this evolutionarily conserved protein has revealed a nonredundant role in resistance to selected pathogens. Moreover, PTX3 exerts important functions at the cross-road between innate immunity, inflammation, and female fertility. Here, we review the studies on PTX3, with emphasis on pathogen recognition and cross-talk with other components of the innate immune system.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Chronic lung infections by Pseudomonas aeruginosa strains are a major cause of morbidity and mortality in cystic fibrosis (CF) patients. Although there is no clear evidence for a primary defect in the immune system of CF patients, the host is generally unable to clear P. aeruginosa from the airways. PTX3 is a soluble pattern recognition receptor that plays nonredundant roles in the innate immune response to fungi, bacteria, and viruses. In particular, PTX3 deficiency is associated with increased susceptibility to P. aeruginosa lung infection. To address the potential therapeutic effect of PTX3 in P. aeruginosa lung infection, we established persistent and progressive infections in mice with the RP73 clinical strain RP73 isolated from a CF patient and treated them with recombinant human PTX3. The results indicated that PTX3 has a potential therapeutic effect in P. aeruginosa chronic lung infection by reducing lung colonization, proinflammatory cytokine levels (CXCL1, CXCL2, CCL2, and IL-1β), and leukocyte recruitment in the airways. In models of acute infections and in in vitro assays, the prophagocytic effect of PTX3 was maintained in C1q-deficient mice and was lost in C3- and Fc common γ-chain-deficient mice, suggesting that facilitated recognition and phagocytosis of pathogens through the interplay between complement and FcγRs are involved in the therapeutic effect mediated by PTX3. These data suggested that PTX3 is a potential therapeutic tool in chronic P. aeruginosa lung infections, such as those seen in CF patients.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

With its high mutation rate, HIV is capable of escape from recognition, suppression and/or killing by CD8(+) cytotoxic T lymphocytes (CTLs). The rate at which escape variants replace each other can give insights into the selective pressure imposed by single CTL clones. We investigate the effects of specific characteristics of the HIV life cycle on the dynamics of immune escape. First, it has been found that cells in HIV-infected patients can carry multiple copies of proviruses. To investigate how this process affects the emergence of immune escape, we develop a mathematical model of HIV dynamics with multiple infections of cells. Increasing the frequency of multiple-infected cells delays the appearance of immune escape variants, slows down the rate at which they replace the wild-type variant and can even prevent escape variants from taking over the quasi-species. Second, we study the effect of the intracellular eclipse phase on the rate of escape and show that escape rates are expected to be slower than previously anticipated. In summary, slow escape rates do not necessarily imply inefficient CTL-mediated killing of HIV-infected cells, but are at least partly a result of the specific characteristics of the viral life cycle.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Hepatitis C virus (HCV) clearance has been associated with reduced viral evolution in targeted cytotoxic T-lymphocyte (CTL) epitopes, suggesting that HCV clearers may mount CTL responses with a superior ability to recognize epitope variants and prevent viral immune escape. Here, 40 HCV-infected subjects were tested with 406 10-mer peptides covering the vast majority of the sequence diversity spanning a 197-residue region of the NS3 protein. HCV clearers mounted significantly broader CTL responses of higher functional avidity and with wider variant cross-recognition capacity than nonclearers. These observations have important implications for vaccine approaches that may need to induce high-avidity responses in vivo.