8 resultados para Image Morphology

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

30.00% 30.00%

Publicador:

Resumo:

A laser scanning microscope collects information from a thin, focal plane and ignores out of focus information. During the past few years it has become the standard imaging method to characterise cellular morphology and structures in static as well as in living samples. Laser scanning microscopy combined with digital image restoration is an excellent tool for analysing the cellular cytoarchitecture, expression of specific proteins and interactions of various cell types, thus defining valid criteria for the optimisation of cell culture models. We have used this tool to establish and evaluate a three dimensional model of the human epithelial airway wall.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Modeling of tumor growth has been performed according to various approaches addressing different biocomplexity levels and spatiotemporal scales. Mathematical treatments range from partial differential equation based diffusion models to rule-based cellular level simulators, aiming at both improving our quantitative understanding of the underlying biological processes and, in the mid- and long term, constructing reliable multi-scale predictive platforms to support patient-individualized treatment planning and optimization. The aim of this paper is to establish a multi-scale and multi-physics approach to tumor modeling taking into account both the cellular and the macroscopic mechanical level. Therefore, an already developed biomodel of clinical tumor growth and response to treatment is self-consistently coupled with a biomechanical model. Results are presented for the free growth case of the imageable component of an initially point-like glioblastoma multiforme tumor. The composite model leads to significant tumor shape corrections that are achieved through the utilization of environmental pressure information and the application of biomechanical principles. Using the ratio of smallest to largest moment of inertia of the tumor material to quantify the effect of our coupled approach, we have found a tumor shape correction of 20\% by coupling biomechanics to the cellular simulator as compared to a cellular simulation without preferred growth directions. We conclude that the integration of the two models provides additional morphological insight into realistic tumor growth behavior. Therefore, it might be used for the development of an advanced oncosimulator focusing on tumor types for which morphology plays an important role in surgical and/or radio-therapeutic treatment planning.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper we present a new population-based implant design methodology, which advances the state-of-the-art approaches by combining shape and bone quality information into the design strategy. The method enhances the mechanical stability of the fixation and reduces the intra-operative in-plane bending which might impede the functionality of the locking mechanism. The method is presented for the case of mandibular locking fixation plates, where the mandibular angle and the bone quality at screw locations are taken into account. Using computational anatomy techniques, the method automatically derives, from a set of computed tomography images, the mandibular angle and the bone thickness and intensity values at the path of every screw. An optimisation strategy is then used to optimise the two parameters of plate angle and screw position. Results for the new design are presented along with a comparison with a commercially available mandibular locking fixation plate. A statistically highly significant improvement was observed. Our experiments allowed us to conclude that an angle of 126° and a screw separation of 8mm is a more suitable design than the standard 120° and 9mm.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

OBJECTIVES: The goal of the present study was to compare the accuracy of in vivo tissue characterization obtained by intravascular ultrasound (IVUS) radiofrequency (RF) data analysis, known as Virtual Histology (VH), to the in vitro histopathology of coronary atherosclerotic plaques obtained by directional coronary atherectomy. BACKGROUND: Vulnerable plaque leading to acute coronary syndrome (ACS) has been associated with specific plaque composition, and its characterization is an important clinical focus. METHODS: Virtual histology IVUS images were performed before and after a single debulking cut using directional coronary atherectomy. Debulking region of in vivo histology image was predicted by comparing pre- and post-debulking VH images. Analysis of VH images with the corresponding tissue cross section was performed. RESULTS: Fifteen stable angina pectoris (AP) and 15 ACS patients were enrolled. The results of IVUS RF data analysis correlated well with histopathologic examination (predictive accuracy from all patients data: 87.1% for fibrous, 87.1% for fibro-fatty, 88.3% for necrotic core, and 96.5% for dense calcium regions, respectively). In addition, the frequency of necrotic core was significantly higher in the ACS group than in the stable AP group (in vitro histopathology: 22.6% vs. 12.6%, p = 0.02; in vivo virtual histology: 24.5% vs. 10.4%, p = 0.002). CONCLUSIONS: Correlation of in vivo IVUS RF data analysis with histopathology shows a high accuracy. In vivo IVUS RF data analysis is a useful modality for the classification of different types of coronary components, and may play an important role in the detection of vulnerable plaque.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Life expectancy continuously increases but our society faces age-related conditions. Among musculoskeletal diseases, osteoporosis associated with risk of vertebral fracture and degenerative intervertebral disc (IVD) are painful pathologies responsible for tremendous healthcare costs. Hence, reliable diagnostic tools are necessary to plan a treatment or follow up its efficacy. Yet, radiographic and MRI techniques, respectively clinical standards for evaluation of bone strength and IVD degeneration, are unspecific and not objective. Increasingly used in biomedical engineering, CT-based finite element (FE) models constitute the state-of-art for vertebral strength prediction. However, as non-invasive biomechanical evaluation and personalised FE models of the IVD are not available, rigid boundary conditions (BCs) are applied on the FE models to avoid uncertainties of disc degeneration that might bias the predictions. Moreover, considering the impact of low back pain, the biomechanical status of the IVD is needed as a criterion for early disc degeneration. Thus, the first FE study focuses on two rigid BCs applied on the vertebral bodies during compression test of cadaver vertebral bodies, vertebral sections and PMMA embedding. The second FE study highlights the large influence of the intervertebral disc’s compliance on the vertebral strength, damage distribution and its initiation. The third study introduces a new protocol for normalisation of the IVD stiffness in compression, torsion and bending using MRI-based data to account for its morphology. In the last study, a new criterion (Otsu threshold) for disc degeneration based on quantitative MRI data (axial T2 map) is proposed. The results show that vertebral strength and damage distribution computed with rigid BCs are identical. Yet, large discrepancies in strength and damage localisation were observed when the vertebral bodies were loaded via IVDs. The normalisation protocol attenuated the effect of geometry on the IVD stiffnesses without complete suppression. Finally, the Otsu threshold computed in the posterior part of annulus fibrosus was related to the disc biomechanics and meet objectivity and simplicity required for a clinical application. In conclusion, the stiffness normalisation protocol necessary for consistent IVD comparisons and the relation found between degeneration, mechanical response of the IVD and Otsu threshold lead the way for non-invasive evaluation biomechanical status of the IVD. As the FE prediction of vertebral strength is largely influenced by the IVD conditions, this data could also improve the future FE models of osteoporotic vertebra.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Patients suffering from cystic fibrosis (CF) show thick secretions, mucus plugging and bronchiectasis in bronchial and alveolar ducts. This results in substantial structural changes of the airway morphology and heterogeneous ventilation. Disease progression and treatment effects are monitored by so-called gas washout tests, where the change in concentration of an inert gas is measured over a single or multiple breaths. The result of the tests based on the profile of the measured concentration is a marker for the severity of the ventilation inhomogeneity strongly affected by the airway morphology. However, it is hard to localize underlying obstructions to specific parts of the airways, especially if occurring in the lung periphery. In order to support the analysis of lung function tests (e.g. multi-breath washout), we developed a numerical model of the entire airway tree, coupling a lumped parameter model for the lung ventilation with a 4th-order accurate finite difference model of a 1D advection-diffusion equation for the transport of an inert gas. The boundary conditions for the flow problem comprise the pressure and flow profile at the mouth, which is typically known from clinical washout tests. The natural asymmetry of the lung morphology is approximated by a generic, fractal, asymmetric branching scheme which we applied for the conducting airways. A conducting airway ends when its dimension falls below a predefined limit. A model acinus is then connected to each terminal airway. The morphology of an acinus unit comprises a network of expandable cells. A regional, linear constitutive law describes the pressure-volume relation between the pleural gap and the acinus. The cyclic expansion (breathing) of each acinus unit depends on the resistance of the feeding airway and on the flow resistance and stiffness of the cells themselves. Special care was taken in the development of a conservative numerical scheme for the gas transport across bifurcations, handling spatially and temporally varying advective and diffusive fluxes over a wide range of scales. Implicit time integration was applied to account for the numerical stiffness resulting from the discretized transport equation. Local or regional modification of the airway dimension, resistance or tissue stiffness are introduced to mimic pathological airway restrictions typical for CF. This leads to a more heterogeneous ventilation of the model lung. As a result the concentration in some distal parts of the lung model remains increased for a longer duration. The inert gas concentration at the mouth towards the end of the expirations is composed of gas from regions with very different washout efficiency. This results in a steeper slope of the corresponding part of the washout profile.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Standard stereotaxic reference systems play a key role in human brain studies. Stereotaxic coordinate systems have also been developed for experimental animals including non-human primates, dogs, and rodents. However, they are lacking for other species being relevant in experimental neuroscience including sheep. Here, we present a spatial, unbiased ovine brain template with tissue probability maps (TPM) that offer a detailed stereotaxic reference frame for anatomical features and localization of brain areas, thereby enabling inter-individual and cross-study comparability. Three-dimensional data sets from healthy adult Merino sheep (Ovis orientalis aries, 12 ewes and 26 neutered rams) were acquired on a 1.5 T Philips MRI using a T1w sequence. Data were averaged by linear and non-linear registration algorithms. Moreover, animals were subjected to detailed brain volume analysis including examinations with respect to body weight (BW), age, and sex. The created T1w brain template provides an appropriate population-averaged ovine brain anatomy in a spatial standard coordinate system. Additionally, TPM for gray (GM) and white (WM) matter as well as cerebrospinal fluid (CSF) classification enabled automatic prior-based tissue segmentation using statistical parametric mapping (SPM). Overall, a positive correlation of GM volume and BW explained about 15% of the variance of GM while a positive correlation between WM and age was found. Absolute tissue volume differences were not detected, indeed ewes showed significantly more GM per bodyweight as compared to neutered rams. The created framework including spatial brain template and TPM represent a useful tool for unbiased automatic image preprocessing and morphological characterization in sheep. Therefore, the reported results may serve as a starting point for further experimental and/or translational research aiming at in vivo analysis in this species.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

PURPOSE To evaluate image contrast and color setting on assessment of retinal structures and morphology in spectral-domain optical coherence tomography. METHODS Two hundred and forty-eight Spectralis spectral-domain optical coherence tomography B-scans of 62 patients were analyzed by 4 readers. B-scans were extracted in 4 settings: W + N = white background with black image at normal contrast 9; W + H = white background with black image at maximum contrast 16; B + N = black background with white image at normal contrast 12; B + H = black background with white image at maximum contrast 16. Readers analyzed the images to identify morphologic features. Interreader correlation was calculated. Differences between Fleiss-kappa correlation coefficients were examined using bootstrap method. Any setting with significantly higher correlation coefficient was deemed superior for evaluating specific features. RESULTS Correlation coefficients differed among settings. No single setting was superior for all respective spectral-domain optical coherence tomography parameters (P = 0.3773). Some variables showed no differences among settings. Hard exudates and subretinal fluid were best seen with B + H (κ = 0.46, P = 0.0237 and κ = 0.78, P = 0.002). Microaneurysms were best seen with W + N (κ = 0.56, P = 0.025). Vitreomacular interface, enhanced transmission signal, and epiretinal membrane were best identified using all color/contrast settings together (κ = 0.44, P = 0.042, κ = 0.57, P = 0.01, and κ = 0.62, P ≤ 0.0001). CONCLUSION Contrast and background affect the evaluation of retinal structures on spectral-domain optical coherence tomography images. No single setting was superior for all features, though certain changes were best seen with specific settings.