28 resultados para Iholdi eta Xola
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
To study whether protein kinase C (PKC) isoforms can interact with protein-tyrosine-phosphatases (PTPs) which are connected to the insulin signaling pathway, we co-overexpressed PKC isoforms together with insulin receptor, docking proteins, and the PTPs SHP1 and SHP2 in human embryonic kidney (HEK) 293 cells. After phorbol ester induced activation of PKC isoforms alpha, beta 1, beta 2, and eta, we could show a defined gel mobility shift of SHP2, indicating phosphorylation on serine/threonine residues. This phosphorylation was not dependent on insulin receptor or insulin receptor substrate-1 (IRS-1) overexpression and did not occur for the closely related phosphatase SHP1. Furthermore, PKC phosphorylation of SHP2 was completely blocked by the PKC inhibitor bisindolylmaleimide and was not detectable when SHP2 was co-overexpressed with kinase negative mutants of PKC beta 1 and -beta 2. The phosphorylation also occurred on endogenous SHP2 in Chinese hamster ovary (CHO) cells stably overexpressing PKC beta 2. Using point mutants of SHP2, we identified serine residues 576 and 591 as phosphorylation sites for PKC. However, no change of phosphatase activity by TPA treatment was detected in an in vitro assay. In summary, SHP2 is phosphorylated on serine residues 576 and 591 by PKC isoforms alpha, beta 1, beta 2, and eta.
Resumo:
The jet energy scale (JES) and its systematic uncertainty are determined for jets measured with the ATLAS detector at the LHC in proton-proton collision data at a centre-of-mass energy of sqrt(s) = 7 TeV corresponding to an integrated luminosity of 38 inverse pb. Jets are reconstructed with the anti-kt algorithm with distance parameters R=0.4 or R=0.6. Jet energy and angle corrections are determined from Monte Carlo simulations to calibrate jets with transverse momenta pt > 20 GeV and pseudorapidities eta<4.5. The JES systematic uncertainty is estimated using the single isolated hadron response measured in situ and in test-beams. The JES uncertainty is less than 2.5% in the central calorimeter region (eta<0.8) for jets with 60 < pt < 800 GeV, and is maximally 14% for pt < 30 GeV in the most forward region 3.2<eta<4.5. The uncertainty for additional energy from multiple proton-proton collisions in the same bunch crossing is less than 1.5% per additional collision for jets with pt > 50 GeV after a dedicated correction for this effect. The JES is validated for jet transverse momenta up to 1 TeV to the level of a few percent using several in situ techniques by comparing a well-known reference such as the recoiling photon pt, the sum of the transverse momenta of tracks associated to the jet, or a system of low-pt jets recoiling against a high-pt jet. More sophisticated jet calibration schemes are presented based on calorimeter cell energy density weighting or hadronic properties of jets, providing an improved jet energy resolution and a reduced flavour dependence of the jet response. The JES systematic uncertainty determined from a combination of in situ techniques are consistent with the one derived from single hadron response measurements over a wide kinematic range. The nominal corrections and uncertainties are derived for isolated jets in an inclusive sample of high-pt jets.
Resumo:
Two-particle correlations in relative azimuthal angle (Delta phi) and pseudorapidity (Delta eta) are measured in root S-NN = 5.02 TeV p + Pb collisions using the ATLAS detector at the LHC. The measurements are performed using approximately 1 mu b(-1) of data as a function of transverse momentum (p(T)) and the transverse energy (Sigma E-T(Pb)) summed over 3.1 < eta < 4.9 in the direction of the Pb beam. The correlation function, constructed from charged particles, exhibits a long-range (2 < vertical bar Delta eta vertical bar < 5) "near-side" (Delta phi similar to 0) correlation that grows rapidly with increasing Sigma E-T(Pb). A long-range "away-side" (Delta phi similar to pi) correlation, obtained by subtracting the expected contributions from recoiling dijets and other sources estimated using events with small Sigma E-T(Pb), is found to match the near-side correlation in magnitude, shape (in Delta eta and Delta phi) and Sigma E-T(Pb) dependence. The resultant Delta phi correlation is approximately symmetric about pi/2, and is consistent with a dominant cos2 Delta phi modulation for all Sigma E-T(Pb) ranges and particle p(T).
Resumo:
ABSTRACT: BACKGROUND: Hepatic sinusoidal resistance is regulated by vasoactive factors including endothelin-1 (ET-1) and nitric oxide (NO). In the absence of NO, vasoconstrictor response to endothelin is expected to predominate. Therefore, we hypothesized sensitivity to endothelin to be increased in mice lacking the endothelial cell NO synthase gene. Response of vascular resistance to endothelin was assessed in the in situ perfused liver of endothelial constitutive nitric oxide synthase (ecNOS) knockout and wild type mice. Livers were also harvested for RNA and protein isolation for quantitative PCR and Western blotting, respectively. The expression of endothelin receptors, isoenzymes of NO synthase, heme-oxygenase and adrenomedullin was quantified. RESULTS: Endothelin increased hepatic vascular resistance in a dose-dependent manner in both strains; however, this increase was significantly less in ecNOS knockout mice at physiologic concentrations. Expression of heme-oxygenases and adrenomedullin was similar in both groups, whereas inducible nitric oxide synthase (iNOS) protein was not detectable in either strain. mRNA levels of pre-pro-endothelin-1 and ETB receptor were comparable in both strains, while mRNA for ETA receptor was decreased in ecNOS knockouts. CONCLUSION: Livers of ecNOS knockout mice have a decreased sensitivity to endothelin at physiologic concentrations; this is associated with a decreased expression of ETA receptors, but not with other factors, such as iNOS, ETB receptors, adrenomedullin or heme-oxygenase. Further studies targeting adaptive changes in ETA receptor distribution and/or intracellular signaling downstream of the receptor are indicated.
Resumo:
There is increasing evidence to suggest that chronic activation of the endothelin-1 system can lead to heterologous desensitization of the glucose-regulatory and mitogenic actions of insulin with subsequent development of glucose intolerance, hyperinsulinemia, impaired endothelial function and exacerbation of cardiovascular disease. Effects are mediated through a variety of mechanisms that include attenuation of key insulin signalling pathways and decreased tyrosine phosphorylation of insulin receptor substrates IRS-1, SHC and G alpha q/11. Other actions involve hemodynamic changes leading to reduced delivery of insulin and glucose to peripheral tissues as well as enhanced hepatic glycogenolysis, decreased glucose-transporter translocation and modulation of various adipokines that regulate insulin action. Overall the data suggest that ET-1 antagonists may provide an effective means of improving cardiac dysfunction and favourably influencing glucose tolerance in obese humans and patients with early insulin sensitivity where there is clear evidence for activation of the ET-1 system. Although most effects of ET-1 that modulate mechanisms leading to glucose intolerance appear to involve the ETA receptor subtype recent data indicates that combined ETA/ETB receptor antagonists may function as effectively as selective ETA blockers. Prospective trials are needed to assess whether ET-1 antagonists, either alone or in combination, are superior to other more conventional therapies such as insulin sensitizers and to evaluate effects of combined treatments on the development of insulin resistance and the progression of diabetes. Early screening of patients at risk for evidence of ET-1 activation would help to identify subjects who may benefit most from such treatment.
Resumo:
BACKGROUND/AIMS: It is postulated that nitric oxide (NO) is responsible for the hyperdynamic circulation of portal hypertension. Therefore, we investigated induction of fibrosis and hyperdynamic circulation in endothelial NO synthase knock-out (KO) mice. METHODS: Fibrosis was induced by bile duct ligation. Hemodynamic studies were performed after portal vein ligation. All studies were performed in wild-type (WT) and KO mice. RESULTS: Three to 4 weeks after bile duct ligation (BDL), both WT and KO groups had similar degrees of portal hypertension, 12 (9-14) and 11(8-15) mmHg, median (range), and liver function. Fibrosis increased from 0.0% in sham operated to 1.0 and 1.1% in WT and KO mice, respectively. Cardiac output was similar after portal vein ligation (20 and 17 ml/min in WT and KO mice, respectively). There was no difference in liver of mRNA for endothelin 1, inducible NO synthase (iNOS) and hem-oxygenase 1 (HO1); proteins of iNOS, HO1 and HO2; nor in endothelin A and B (EtA and EtB) receptor density between WT and KO mice after BDL. CONCLUSIONS: These results suggest that endothelial NO synthase is neither essential for the development of fibrosis and portal hypertension in bile duct ligated mice, nor for the hyperdynamic circulation associated with portal hypertension in the portal vein ligated mice.
Resumo:
Secondary complications of diabetes mellitus often involve gastrointestinal dysfunction. In the experimental Goto Kakizaki rat, a model of Type II diabetes, hyperglycaemia and reduced glucose clearance is associated with elevated plasma endothelin (ET)-1 levels and selective decreases in nitric oxide synthase in circular muscle, longitudinal muscle and neuronal elements of the gastrointestinal tract. Functionally, this is accompanied by decreased nitrergic relaxatory responses of jejunal longitudinal muscle to tetrodotoxin-sensitive electrical field stimulation. Long-term treatment with a selective ET A-type receptor antagonist, markedly reduced hyperglycaemia and restored plasma glucose clearance rates towards normal. This was associated with a restoration of N(G)-nitro-L-arginine methyl ester-sensitive relaxatory responses of jejunal longitudinal muscle to electrical field stimulation. The results indicate that beneficial effects of ETA receptor blockade on gastrointestinal function may result from an improvement in insulin sensitivity with concomitant reduction of the severity of hyperglycaemia. ETA receptor blockade may represent a new therapeutic principle for improving glucose tolerance in Type II diabetes and could be beneficial in alleviating or preventing hyperglycaemia-related secondary complications in this condition.
Resumo:
CONTEXT: The success of pancreatic islet transplantation depends largely on the capacity of the islet graft to survive the initial phase immediately after transplantation until revascularization is completed. Endothelin-1 (ET-1) is a strong vasoconstrictor which has been involved in solid organ graft failure but is also known to be a potent mitogenic/anti-apoptotic factor which could also potentially enhance the survival of the transplanted islets. OBJECTIVE: Characterization of the endothelin system with regard to a potential endothelin agonist/antagonist treatment. DESIGN: Regulated expression of the endothelin system in human and rat pancreatic islets and beta-cell lines was assessed by means of immunohistochemistry, competition binding studies, western blot, RT-PCR, real-time PCR and transplant studies. RESULTS: ET-1, ETA- and ETB-receptor immunoreactivity was identified in the endocrine cells of human and rat pancreatic islets. The corresponding mRNA was detectable in rat beta-cell lines and isolated rat and human pancreatic islets. Competition binding studies on rat islets revealed binding sites for both receptor types. ET-1 stimulated the phosphorylation of mitogen-activated protein kinase, which was prevented by ETA- and ETB-receptor antagonists. After exposure to hypoxia equal to post-transplant environment oxygen tension, mRNA levels of ET-1 and ETB-receptor of human islets were robustly induced whereas ETA-receptor mRNA did not show significant changes. Immunostaining signals for ET-1 and ETA-receptor of transplanted rat islets were markedly decreased when compared to native pancreatic sections. CONCLUSIONS: In pancreatic islets, ET-1 and its receptors are differentially expressed by hypoxia and after transplantation. Our results provide the biological basis for the study of the potential use of endothelin agonists/antagonists to improve islet transplantation outcome.
Resumo:
Activity of clotting factor VIII has been shown to acutely increase with sympathetic nervous system stimulation. We investigated whether aspirin and propranolol affect the responsiveness of plasma clotting factor VIII activity levels to acute psychosocial stress. We randomized 54 healthy subjects double-blind to 5-day treatment with a single daily oral dosage of either 100 mg aspirin plus 80 mg propranolol combined, 100 mg of aspirin, 80 mg of propranolol, or placebo medication. Thereafter, subjects underwent a 13-min standardized psychosocial stressor. Plasma levels of clotting factor VIII activity were determined immediately before, immediately after, 45 min and 105 min after stress. Controlling for demographic, metabolic, and life style factors repeated measures analysis of covariance showed that the change in clotting factor VIII activity from prestress to 105 min poststress differed between medication groups (P = 0.023; partial eta = 0.132). The clotting factor VIII activity level decreased from prestress to immediately poststress in the aspirin/propranolol group relative to the placebo group (P = 0.048) and the aspirin group (P < 0.06). Between 45 min and 105 min poststress, clotting factor VIII levels increased in the aspirin/propranolol group relative to the placebo group (P = 0.007) and the aspirin group (P = 0.039). The stress response in clotting factor VIII activity levels was not significantly different between the aspirin/propranolol group and the propranolol group. Propranolol in combination with aspirin diminished the acute response in clotting factor VIII activity to psychosocial stress compared with placebo medication and aspirin alone. The effect of single aspirin on the acute clotting factor VIII stress response was indistinguishable from a placebo effect.
Resumo:
Acute mental stress is a potent trigger of acute coronary syndromes. Catecholamine-induced hypercoagulability with acute stress contributes to thrombus growth after coronary plaque rupture. Melatonin may diminish catecholamine activity. We hypothesized that melatonin mitigates the acute procoagulant stress response and that this effect is accompanied by a decrease in the stress-induced catecholamine surge. Forty-five healthy young men received a single oral dose of either 3 mg melatonin (n = 24) or placebo medication (n = 21). One hour thereafter, they underwent a standardized short-term psychosocial stressor. Plasma levels of clotting factor VII activity (FVII:C), FVIII:C, fibrinogen, D-dimer, and catecholamines were measured at rest, immediately after stress, and 20 min and 60 min post-stress. The integrated change in D-dimer levels from rest to 60 min post-stress differed between medication groups controlling for demographic and metabolic factors (P = 0.047, eta(p)(2) = 0.195). Compared with the melatonin group, the placebo group showed a greater increase in absolute D-dimer levels from rest to immediately post-stress (P = 0.13; eta(p)(2) = 0.060) and significant recovery of D-dimer levels from immediately post-stress to 60 min thereafter (P = 0.007; eta(p)(2) = 0.174). Stress-induced changes in FVII:C, FVIII:C, fibrinogen, and catecholamines did not significantly differ between groups. Oral melatonin attenuated the stress-induced elevation in the sensitive coagulation activation marker D-dimer without affecting catecholamine activity. The finding provides preliminary support for a protective effect of melatonin in reducing the atherothrombotic risk with acute mental stress.
Resumo:
Psychosocial stress might increase the risk of atherothrombotic events by setting off an elevation in circulating levels of the proinflammatory cytokine interleukin (IL)-6. We investigated the effect of aspirin and propranolol on the responsiveness of plasma IL-6 levels to acute psychosocial stress. For 5 days, 64 healthy subjects were randomized, double-blind, to daily oral aspirin 100mg plus long-acting propranolol 80 mg, aspirin 100mg plus placebo, long-acting propranolol 80 mg plus placebo, or placebo plus placebo. Thereafter, all subjects underwent the 13-min Trier Social Stress Test, which combines a preparation phase, a job interview, and a mental arithmetic task. Plasma IL-6 levels were measured in blood samples collected immediately pre- and post-stress, and 45 min and 105 min thereafter. The change in IL-6 from pre-stress to 105 min post-stress differed between subjects with aspirin medication and those without (p =0.033; eta p2=0.059). IL-6 levels increased less from pre-stress to 105 min post-stress (p <0.027) and were lower (p =0.010) at 105 min post-stress in subjects with aspirin than in subjects without aspirin. The significance of these results was maintained when controlling for gender, age, waist-to-hip ratio, mean arterial blood pressure, and smoking status. Medication with propranolol was not significantly associated with the stress-induced change in IL-6 levels. Also, aspirin and propranolol did not significantly interact in determining the IL-6 stress response. Aspirin but not propranolol attenuated the stress-induced increase in plasma IL-6 levels. This suggests one mechanism by which aspirin treatment might reduce the risk of atherothrombotic events triggered by acute mental stress.
Resumo:
OBJECTIVE: Vital exhaustion and depression are psychosocial risk factors of coronary artery disease. A hypercoagulable state in response to acute psychosocial stress contributes to atherothrombotic events. We aimed to investigate the hypothesis that vital exhaustion and depression correlate with stress-induced changes in the hypercoagulability marker D-dimer. METHODS: Thirty-eight healthy and nonsmoking school teachers (mean age 50+/-8 years, 55% women) completed the nine-item Maastricht Vital Exhaustion Questionnaire and the seven-item depression subscale of the Hospital Anxiety and Depression Scale. Within 1 week, subjects twice underwent the Trier Social Stress Test (i.e., preparation phase, mock job interview, and mental arithmetic that totaled 13 min). Plasma D-dimer levels were determined at five time points during the protocol. RESULTS: Vital exhaustion (P=.022; eta(2)=.080) and depressive symptoms (P=.011; eta(2)=.090) were associated with stress-induced changes in D-dimer levels over time controlling for sex and age. Elevated levels of vital exhaustion (r=-.46, P=.005) and of depression (r=-.51, P=.002) correlated with reduced D-dimer increase from pre-stress to immediately post-stress. Also, elevated vital exhaustion (r=.34, P=.044) and depression (r=.41, P=.013) were associated with increase (i.e., attenuated recovery) of D-dimer levels between 20 and 45 min post-stress. Controlling for stress hormone and blood pressure reactivity did not substantially alter these results. CONCLUSION: The findings suggest an attenuated immediate D-dimer stress response and delayed recovery of D-dimer levels post-stress with elevated vital exhaustion and depressive symptoms. In particular, the prolonged hypercoagulability after stress cessation might contribute to the atherothrombotic risk previously observed with vital exhaustion and depression, even at subclinical levels.