348 resultados para Idiopathic Pulmonary Hemosiderosis
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
Background Idiopathic pulmonary fibrosis is a progressive and fatal lung disease with inevitable loss of lung function. The CAPACITY programme (studies 004 and 006) was designed to confirm the results of a phase 2 study that suggested that pirfenidone, a novel antifibrotic and anti-inflammatory drug, reduces deterioration in lung function in patients with idiopathic pulmonary fibrosis. Methods In two concurrent trials (004 and 006), patients (aged 40–80 years) with idiopathic pulmonary fibrosis were randomly assigned to oral pirfenidone or placebo for a minimum of 72 weeks in 110 centres in Australia, Europe, and North America. In study 004, patients were assigned in a 2:1:2 ratio to pirfenidone 2403 mg/day, pirfenidone 1197 mg/day, or placebo; in study 006, patients were assigned in a 1:1 ratio to pirfenidone 2403 mg/day or placebo. The randomisation code (permuted block design) was computer generated and stratified by region. All study personnel were masked to treatment group assignment until after final database lock. Treatments were administered orally, 801 mg or 399 mg three times a day. The primary endpoint was change in percentage predicted forced vital capacity (FVC) at week 72. Analysis was by intention to treat. The studies are registered with ClinicalTrials.gov, numbers NCT00287729 and NCT00287716. Findings In study 004, 174 of 435 patients were assigned to pirfenidone 2403 mg/day, 87 to pirfenidone 1197 mg/day, and 174 to placebo. In study 006, 171 of 344 patients were assigned to pirfenidone 2403 mg/day, and 173 to placebo. All patients in both studies were analysed. In study 004, pirfenidone reduced decline in FVC (p=0·001). Mean FVC change at week 72 was −8·0% (SD 16·5) in the pirfenidone 2403 mg/day group and −12·4% (18·5) in the placebo group (difference 4·4%, 95% CI 0·7 to 9·1); 35 (20%) of 174 versus 60 (35%) of 174 patients, respectively, had a decline of at least 10%. A significant treatment effect was noted at all timepoints from week 24 and in an analysis over all study timepoints (p=0·0007). Mean change in percentage FVC in the pirfenidone 1197 mg/day group was intermediate to that in the pirfenidone 2403 mg/day and placebo groups. In study 006, the difference between groups in FVC change at week 72 was not significant (p=0·501). Mean change in FVC at week 72 was −9·0% (SD 19·6) in the pirfenidone group and −9·6% (19·1) in the placebo group, and the difference between groups in predicted FVC change at week 72 was not significant (0·6%, −3·5 to 4·7); however, a consistent pirfenidone effect was apparent until week 48 (p=0·005) and in an analysis of all study timepoints (p=0·007). Patients in the pirfenidone 2403 mg/day group had higher incidences of nausea (125 [36%] of 345 vs 60 [17%] of 347), dyspepsia (66 [19%] vs 26 [7%]), vomiting (47 [14%] vs 15 [4%]), anorexia (37 [11%] vs 13 [4%]), photosensitivity (42 [12%] vs 6 [2%]), rash (111 [32%] vs 40 [12%]), and dizziness (63 [18%] vs 35 [10%]) than did those in the placebo group. Fewer overall deaths (19 [6%] vs 29 [8%]) and fewer deaths related to idiopathic pulmonary fibrosis (12 [3%] vs 25 [7%]) occurred in the pirfenidone 2403 mg/day groups than in the placebo groups. Interpretation The data show pirfenidone has a favourable benefit risk profile and represents an appropriate treatment option for patients with idiopathic pulmonary fibrosis.
Resumo:
Idiopathic pulmonary fibrosis (IPF) is characterized by an uncontrolled accumulation and activation of lung fibroblasts. A modulation of fibroblast activation has been observed in various systems with octreotide, a synthetic somatostatin analog with strong affinity for the somatostatin receptor subtype 2 (sst2). One aim of our study was to evaluate the expression of somatostatin receptors in the lungs of patients with IPF. A second aim was to evaluate the relationship between 111In-octreotide uptake and the effect of pulmonary fibrosis as assessed by lung function tests and parameters and by radiologic findings. METHODS: We investigated 11 patients with IPF, 6 patients with pulmonary fibrosis associated with systemic sclerosis (SSc), and 19 patients with disease not of the lung (control patients). The expression of somatostatin receptors was evaluated in vivo using 111In-octreotide scintigraphy. We evaluated the relationship between 111In-octreotide uptake and the activity of pulmonary fibrosis as assessed by lung function tests, bronchoalveolar lavage (BAL) cellularity, and high-resolution CT (HRCT) of the chest. Planar images and thoracic SPECT (24 h) were performed after injection of 222 MBq of 111In-octreotide. Lung uptake was quantified using the lung-to-background ratio (L/B). In addition, the expression of sst2 was evaluated in vitro, in frozen lung-tissue samples using autoradiography, and in human cultures of lung fibroblasts using a ligand-binding assay. RESULTS: Compared with lung uptake in control patients (median L/B, 1.25; range, 1.14-1.49), lung uptake was increased in all 11 IPF patients (median L/B, 2.63; range, 1.59-3.13; P < 0.001) and in 4 of 6 SSc patients (median L/B, 1.68; range, 1.42-2.16). The L/B was lower in SSc patients than in IPF patients (P = 0.011). Increased uptake correlated with the alteration of lung function (carbon monoxide diffusing capacity [rho = -0.655; P = 0.038], diffusing capacity for carbon monoxide and alveolar volume ratio [rho = -0.627; P = 0.047], vital capacity [rho = -0.609; P = 0.054], and total lung capacity [rho = -0.598; P = 0.058]) and with the intensity of alveolitis (total BAL cellularity [rho = 0.756; P = 0.045], neutrophil counts [rho = 0.738; P = 0.05]), and HRCT fibrosis score (rho = 0.673; P = 0.007). Autoradiography suggested that vascular structures were a prominent binding site. Lung fibroblasts expressed somatostatin receptors in vitro as measured by binding assay. CONCLUSION: Our preliminary results identified an increased expression of sst2 in (mainly idiopathic) pulmonary fibrosis. Lung uptake correlates with the alteration of lung function and with the intensity of alveolitis.
Resumo:
BACKGROUND Idiopathic pulmonary fibrosis (IPF) is characterized by formation and proliferation of fibroblast foci. Endothelin-1 induces lung fibroblast proliferation and contractile activity via the endothelin A (ETA) receptor. OBJECTIVE To determine whether ambrisentan, an ETA receptor-selective antagonist, reduces the rate of IPF progression. DESIGN Randomized, double-blind, placebo-controlled, event-driven trial. (ClinicalTrials.gov: NCT00768300). SETTING Academic and private hospitals. PARTICIPANTS Patients with IPF aged 40 to 80 years with minimal or no honeycombing on high-resolution computed tomography scans. INTERVENTION Ambrisentan, 10 mg/d, or placebo. MEASUREMENTS Time to disease progression, defined as death, respiratory hospitalization, or a categorical decrease in lung function. RESULTS The study was terminated after enrollment of 492 patients (75% of intended enrollment; mean duration of exposure to study medication, 34.7 weeks) because an interim analysis indicated a low likelihood of showing efficacy for the end point by the scheduled end of the study. Ambrisentan-treated patients were more likely to meet the prespecified criteria for disease progression (90 [27.4%] vs. 28 [17.2%] patients; P = 0.010; hazard ratio, 1.74 [95% CI, 1.14 to 2.66]). Lung function decline was seen in 55 (16.7%) ambrisentan-treated patients and 19 (11.7%) placebo-treated patients (P = 0.109). Respiratory hospitalizations were seen in 44 (13.4%) and 9 (5.5%) patients in the ambrisentan and placebo groups, respectively (P = 0.007). Twenty-six (7.9%) patients who received ambrisentan and 6 (3.7%) who received placebo died (P = 0.100). Thirty-two (10%) ambrisentan-treated patients and 16 (10%) placebo-treated patients had pulmonary hypertension at baseline, and analysis stratified by the presence of pulmonary hypertension revealed similar results for the primary end point. LIMITATION The study was terminated early. CONCLUSION Ambrisentan was not effective in treating IPF and may be associated with an increased risk for disease progression and respiratory hospitalizations. PRIMARY FUNDING SOURCE Gilead Sciences.
Resumo:
Idiopathic pulmonary fibrosis (IPF) is a chronic progressive lung disease with poor survival. Recent studies have improved understanding of IPF and new discoveries have led to novel treatment options, which now have become available for patients. In face of the newly available therapies we present an update on the pathophysiology and epidemiology of IPF. We discuss the typical clinical findings and elaborate diagnostic procedures according to current guidelines and our daily practice approach. The role of biomarkers will briefly be outlined. Finally, we discuss novel antifibrotic treatment options for IPF (pirfenidone, nintedanib) and the management of patients regarding to comorbidities and complications. Both pirfenidone and nintedanib were shown to reduce the progression of IPF and therefore represent novel therapeutic strategies in this so far untreatable chronic lung disease.
Resumo:
In idiopathic portal hypertension (IPH) typical vascular lesions are present in the branches of the portal vein or in the perisinusoidal area of the liver. Similar histological alterations have been reported in the pulmonary vasculature of patients with idiopathic pulmonary artery hypertension (IPAH). As IPAH is associated with mutations of the bone morphogenetic protein receptor 2 (BMPR2) gene, the aim of this study was to investigate whether this association might also be found in patients with IPH. Twenty-three samples belonging to 21 unrelated caucasian patients with IPH followed in the hepatic haemodynamic laboratory of the Hospital Clinic in Barcelona were included in the study. All patients were studied for the entire open reading frame and splice site of the BMPR2 gene by direct sequencing and multiple ligation probe amplification (MLPA) in order to detect large deletions/duplications. None of the 23 patients had pulmonary artery hypertension. Four patients presented one single nucleotide polymorphism (SNP) in intron 5, four patients had a SNP in exon 12 and a SNP in exon 1 was found in two cases. Two patients had both intron 5 and exon 12 polymorphisms. All SNPs were previously described. Except for these three SNPs, neither mutations nor rearrangements have been identified in the BMPR2 gene in this population. We did not detect mutations or rearrangements in the coding region of the BMPR2 gene in our patients with IPH. These findings suggest that, in contrast to IPAH, mutations in BMPR2 are not involved in the pathogenesis of IPH.
Resumo:
BACKGROUND: The prognosis of pulmonary hypertension (PH), especially idiopathic pulmonary arterial hypertension (IPAH), has improved during the recent years. The Swiss Registry for PH represents the collaboration of the various centres in Switzerland dealing with PH and serves as an important tool in quality control. The objective of the study was to describe the treatment and clinical course of this orphan disease in Switzerland. METHODS: We analyzed data from 222 of 252 adult patients, who were included in the registry between January 1999 and December 2004 and suffered from either PAH, PH associated with lung diseases or chronic thromboembolic PH (CTEPH) with respect to the following data: NYHA class, six-minute walking distance (6-MWD), haemodynamics, treatments and survival. RESULTS: If compared with the calculated expected figures the one, two and three year mean survivals in IPAH increased from 67% to 89%, from 55% to 78% and from 46% to 73%, respectively. Most patients (90%) were on oral or inhaled therapy and only 10 patients necessitated lung transplantation. Even though pulmonary endarterectomy (PEA) was performed in only 7 patients during this time, the survival in our CTEPH cohort improved compared with literature data and seems to approach outcomes usually seen after PEA. The 6-MWD increased maximally by 52 m and 59 m in IPAH and CTEPH, respectively, but in the long term returned to or below baseline values, despite the increasing use of multiple specific drugs (overall in 51% of IPAH and 29% of CTEPH). CONCLUSION: Our national registry data indicate that the overall survival of IPAH and presumably CTEPH seems to have improved in Switzerland. Although the 6-MWD improved transiently, it decreased in the long term despite specific and increasingly combined drug treatment. Our findings herewith underscore the progressive nature of the diseases and the need for further intense research in the field.
Resumo:
We prospectively investigated the potential of positron emission tomography (PET) using the somatostatin receptor (SSTR) analogue ⁶⁸Ga-DOTATATE and 2-deoxy-2[¹⁸F]fluoro-D-glucose (¹⁸F-FDG) in diffuse parenchymal lung disease (DPLD). Twenty-six patients (mean age 68.9 ± 11.0 years) with DPLD were recruited for ⁶⁸Ga-DOTATATE and ¹⁸F-FDG combined PET/high-resolution computed tomography (HRCT) studies. Ten patients had idiopathic pulmonary fibrosis (IPF), 12 patients had nonspecific interstitial pneumonia (NSIP), and 4 patients had other forms of DPLD. Using PET, the pulmonary tracer uptake (maximum standardized uptake value [SUV(max)]) was calculated. The distribution of PET tracer was compared to the distribution of lung parenchymal changes on HRCT. All patients demonstrated increased pulmonary PET signal with ⁶⁸Ga-DOTATATE and ¹⁸F-FDG. The distribution of parenchymal uptake was similar, with both tracers corresponding to the distribution of HRCT changes. The mean SUV(max) was 2.2 ± 0.7 for ⁶⁸Ga-DOTATATE and 2.8 ± 1.0 (t-test, p = .018) for ¹⁸F-FDG. The mean ⁶⁸Ga-DOTATATE SUV(max) in IPF patients was 2.5 ± 0.9, whereas it was 2.0 ± 0.7 (p = .235) in NSIP patients. The correlation between ⁶⁸Ga-DOTATATE SUV(max) and gas transfer (transfer factor of the lung for carbon monoxide [TLCO]) was r = -.34 (p = .127) and r = -.49 (p = .028) between ¹⁸F-FDG SUV(max) and TLCO. We provide noninvasive in vivo evidence in humans showing that SSTRs may be detected in the lungs of patients with DPLD in a similar distribution to sites of increased uptake of ¹⁸F-FDG on PET.
Resumo:
Microfluidic systems have become competitive tools in the invitro modelling of diseases and promising alternatives to animal studies. They allow obtaining more invivo like conditions for cellular assays. Research in idiopathic pulmonary fibrosis could benefit from this novel methodological approach to understand the pathophysiology of the disease & develop efficient therapies. The use of hepatocyte growth factor (HGF) for alveolar reepithelisation is a promising approach. In this study, we show a new microfluidic system to analyse the effects of HGF on injured alveolar epithelial cells. Microfluidic systems in polydimethylsiloxane were fabricated by soft lithography. The alveolar A549 epithelial cells (10,000 cells) were seeded and studied in these microfluidic systems with media perfusion (1μl/30min). Injury tests were made on the cells by the perfusion with media containing H2O2 or bleomycin. The degree of injury was then assessed by a metabolic and an apoptotic assays. Wound assays were also performed with a central laminar flow of trypsin. Monitoring of wound closure with HGF vs control media was assessed. The alveolar A549 epithelial cells grew and proliferated in the microfluidic system. In the wound closure assay, the degree of wound closure after 5 hours was (53.3±1.3%) with HGF compared to (9.8±2.4%) without HGF (P <0.001). We present a novel microfluidic model that allows culture, injury and wounding of A549 epithelial cells and represents the first step towards the development of an invitro reconstitution of the alveolar-capillary interface. We were also able to confirm that HGF increased alveolar epithelial repair in this system.
Resumo:
Background: Microfluidics system are novel tools to study cell-cell interactions in vitro. This project focuses on the development of a new microfluidic device to co-culture alveolar epithelial cells and mesenchymal stem cells to study cellular interactions involved in healing the injured alveolar epithelium. Methods: Microfluidic systems in polydimethylsiloxane were fabricated by soft lithography. The alveolar A549 epithelial cells were seeded and injury tests were made on the cells by perfusion with media containing H2O2 or bleomycin during 6 or 18hrs. Rat Bone marrow derived stromal cells (BMSC) were then introduced into the system and cell-cell interaction was studied over 24 hrs. Results: A successful co-culture of A549 alveolar epithelial cells and BMS was achieved in the microfluidic system. The seeded alveolar epithelial cells and BMSC adhered to the bottom surface of the microfluidic device and proliferated under constant perfusion. Epithelial injury to mimic mechanisms seen in idiopathic pulmonary fibrosis was induced in the microchannels by perfusing with H2O2 or bleomycin. Migration of BMSC towards the injured epithelium was observed as well as cell-cell interaction between the two cell types was also seen. Conclusion: We demonstrate a novel microfluidic device aimed at showing interactions between different cell types on the basis of a changing microenvironment. Also we were able to confirm interaction between injured alvolar epithelium and BMSC, and showed that BMSC try to heal the injured epitelium.
Resumo:
Idiopathic pulmonary fibrosis (IPF) remains a major clinical challenge to date. Repeated alveolar epithelial microinjuries are considered as the starting point and the key event in both the development and the progression of IPF. Various pro-fibrotic agents have been identified and shown to cause alveolar damage. In IPF, however, no leading cause of alveolar epithelial microinjuries can be identified and the exact etiology remains elusive. New results from epidemiologic studies suggest a causal relation between IPF and frequent episodes of gastric refluxes resulting in gastric microaspirations into the lung. The effect of gastric contents on the alveolar epithelium has not been investigated in detail. Here, we present a microfluidic lung epithelial wounding system that allows for the selective exposure of alveolar epithelial cells to gastric contents. The system is revealed to be robust and highly reproducible. The thereby created epithelial microwounds are of tiny dimensions and best possibly reproduce alveolar damage in the lung. We further demonstrate that exposure to gastric contents, namely hydrochloric acid (HCl) and pepsin, directly damages the alveolar epithelium. Together, this novel in vitro wounding system allows for the creation of in vivo-like alveolar microinjuries with the potential to study lung injury and alveolar wound repair in vitro.
Resumo:
INTRODUCTION Idiopathic pulmonary fibrosis (IPF) is a progressive and irreversible fibrotic lung disease, resulting in respiratory insufficiency and reduced survival. Pulmonary fibrosis is a result of repeated alveolar epithelial microinjuries, followed by abnormal regeneration and repair processes in the lung. Recently, stem cells and their secretome have been investigated as a novel therapeutic approach in pulmonary fibrosis. We evaluated the potential of induced pluripotent stem cells (iPSC) conditioned media (iPSC-cm) to regenerate and repair the alveolar epithelium in vitro and improve bleomycin induced lung injury in vivo. METHODS IPSC-cm was collected from cultured iPSC derived from human foreskin fibroblasts and its biological effects on alveolar epithelial wound repair was studied in an alveolar wound healing assay in vitro. Furthermore, iPSC-cm was intratracheally instilled 7 days after bleomycin induced injury in the rat lungs and histologically and biochemically assessed 7 days after instillation. RESULTS iPSC-cm increased alveolar epithelial wound repair in vitro compared with medium control. Intratracheal instillation of iPSC-cm in bleomycin-injured lungs reduced the collagen content and improved lung fibrosis in the rat lung in vivo. Profibrotic TGFbeta1 and alpha-smooth muscle actin (alpha-sma) expression were markedly reduced in the iPSC-cm treated group compared with control. Antifibrotic hepatocyte growth factor (HGF) was detected in iPSC-cm in biologically relevant levels, and specific inhibition of HGF in iPSC-cm attenuated the antifibrotic effect of iPSC-cm, indicating a central role of HGF in iPSC-cm. CONCLUSION iPSC-cm increased alveolar epithelial wound repair in vitro and attenuated bleomycin induced fibrosis in vivo, partially due to the presence of HGF and may represent a promising novel, cell free therapeutic option against lung injury and fibrosis.
Resumo:
Idiopathic pulmonary fibrosis (IPF) and bleomycin-induced pulmonary fibrosis are associated with surfactant system dysfunction, alveolar collapse (derecruitment), and collapse induration (irreversible collapse). These events play undefined roles in the loss of lung function. The purpose of this study was to quantify how surfactant inactivation, alveolar collapse, and collapse induration lead to degradation of lung function. Design-based stereology and invasive pulmonary function tests were performed 1, 3, 7, and 14 days after intratracheal bleomycin-instillation in rats. The number and size of open alveoli was correlated to mechanical properties. Active surfactant subtypes declined by Day 1, associated with a progressive alveolar derecruitment and a decrease in compliance. Alveolar epithelial damage was more pronounced in closed alveoli compared with ventilated alveoli. Collapse induration occurred on Day 7 and Day 14 as indicated by collapsed alveoli overgrown by a hyperplastic alveolar epithelium. This pathophysiology was also observed for the first time in human IPF lung explants. Before the onset of collapse induration, distal airspaces were easily recruited, and lung elastance could be kept low after recruitment by positive end-expiratory pressure (PEEP). At later time points, the recruitable fraction of the lung was reduced by collapse induration, causing elastance to be elevated at high levels of PEEP. Surfactant inactivation leading to alveolar collapse and subsequent collapse induration might be the primary pathway for the loss of alveoli in this animal model. Loss of alveoli is highly correlated with the degradation of lung function. Our ultrastructural observations suggest that collapse induration is important in human IPF.
Resumo:
We report the case of a patient in whom successful radiofrequency catheter ablation of an idiopathic ventricular tachycardia (VT) originating in the main stem of the pulmonary artery was performed. After successful ablation of the index arrhythmia, which was an idiopathic right ventricular outflow tract VT, a second VT with a different QRS morphology was reproducibly induced. Mapping of the second VT revealed the presence of myocardium approximately 2 cm above the pulmonary valve. Application of radiofrequency energy at this site resulted in termination and noninducibility of this VT. After 6-month follow-up, the patient remained free from VT recurrences.