11 resultados para Identification of structural damage
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
Deep brain stimulation (DBS) for Parkinson's disease often alleviates the motor symptoms, but causes cognitive and emotional side effects in a substantial number of cases. Identification of the motor part of the subthalamic nucleus (STN) as part of the presurgical workup could minimize these adverse effects. In this study, we assessed the STN's connectivity to motor, associative, and limbic brain areas, based on structural and functional connectivity analysis of volunteer data. For the structural connectivity, we used streamline counts derived from HARDI fiber tracking. The resulting tracks supported the existence of the so-called "hyperdirect" pathway in humans. Furthermore, we determined the connectivity of each STN voxel with the motor cortical areas. Functional connectivity was calculated based on functional MRI, as the correlation of the signal within a given brain voxel with the signal in the STN. Also, the signal per STN voxel was explained in terms of the correlation with motor or limbic brain seed ROI areas. Both right and left STN ROIs appeared to be structurally and functionally connected to brain areas that are part of the motor, associative, and limbic circuit. Furthermore, this study enabled us to assess the level of segregation of the STN motor part, which is relevant for the planning of STN DBS procedures.
Resumo:
OBJECTIVE: The success of open and endovascular repair of abdominal aortic aneurysms (AAA) is hampered by postoperative dilatation of the anatomical neck of the AAA, which is used for graft attachment. The purpose of this study was to determine whether the macroscopically non-diseased infrarenal aortic neck of AAA is histologically and biochemically altered at the time of operative repair. METHODS: We harvested full-thickness aortic wall samples as longitudinal stripes spanning from AAA neck to aneurysmal sac in 22 consecutive patients undergoing open surgical AAA repair. Control tissue was obtained from five organ donors and five deceased subjects undergoing autopsy without evidence of aneurysmal disease. We assessed aortic media thickness, number of intact elastic lamellar units, media destruction, and neovascularization grade and performed immunohistochemistry for matrix metalloproteinase (MMP)-9 and phosphorylated c-Jun N-terminal kinase (p-JNK). MMP-9 and p-JNK protein expressions were quantified using Western Blots. RESULTS: The median thickness of the aortic media was 1150 mum in control tissue (range, 1000-1300), 510 mum in aortic necks (250-900), and 200 mum in aortic sacs (50-500, P from nonparametric test for trend <.001). The number of intact elastic lamellar units was 33 in controls (range, 33-55), 12 in aortic necks (0-31) and three in aortic sacs (0-10, P < .001). The expression of MMP-9 and p-JNK as assessed by Western Blots (P = .007 and .061, respectively) and zymography (P for trend <.001) were up regulated in both the AAA neck and sac compared with controls. Except for p-JNK expression, differences between tissues were similar after the adjustment for age, gender, and type of sampling. CONCLUSION: The seemingly non-diseased infrarenal AAA neck in patients with AAA undergoing surgical repair shows histological signs of destruction and upregulation of potential drug targets.
Resumo:
The B-box motif is the defining feature of the TRIM family of proteins, characterized by a RING finger-B-box-coiled coil tripartite fold. We have elucidated the crystal structure of B-box 2 (B2) from MuRF1, a TRIM protein that supports a wide variety of protein interactions in the sarcomere and regulates the trophic state of striated muscle tissue. MuRF1 B2 coordinates two zinc ions through a cross-brace alpha/beta-topology typical of members of the RING finger superfamily. However, it self-associates into dimers with high affinity. The dimerization pattern is mediated by the helical component of this fold and is unique among RING-like folds. This B2 reveals a long shallow groove that encircles the C-terminal metal binding site ZnII and appears as the defining protein-protein interaction feature of this domain. A cluster of conserved hydrophobic residues in this groove and, in particular, a highly conserved aromatic residue (Y133 in MuRF1 B2) is likely to be central to this role. We expect these findings to aid the future exploration of the cellular function and therapeutic potential of MuRF1.
Resumo:
Inhibition of ErbB2 (HER2) with monoclonal antibodies, an effective therapy in some forms of breast cancer, is associated with cardiotoxicity, the pathophysiology of which is poorly understood. Recent data suggest, that dual inhibition of ErbB1 (EGFR) and ErbB2 signaling is more efficient in cancer therapy, however, cardiac safety of this therapeutic approach is unknown. We therefore tested an ErbB1-(CGP059326) and an ErbB1/ErbB2-(PKI166) tyrosine kinase inhibitor in an in-vitro system of adult rat ventricular cardiomyocytes and assessed their effects on 1. cell viability, 2. myofibrillar structure, 3. contractile function, and 4. MAPK- and Akt-signaling alone or in combination with Doxorubicin. Neither CGP nor PKI induced cardiomyocyte necrosis or apoptosis. PKI but not CGP caused myofibrillar structural damage that was additive to that induced by Doxorubicin at clinically relevant doses. These changes were associated with an inhibition of excitation-contraction coupling. PKI but not CGP decreased p-Erk1/2, suggesting a role for this MAP-kinase signaling pathway in the maintenance of myofibrils. These data indicate that the ErbB2 signaling pathway is critical for the maintenance of myofibrillar structure and function. Clinical studies using ErbB2-targeted inhibitors for the treatment of cancer should be designed to include careful monitoring for cardiac dysfunction.
Resumo:
Alcohol-induced liver disease (ALD) is a leading cause of nonaccident-related deaths in the United States. Although liver damage caused by ALD is reversible when discovered at the earlier stages, current risk assessment tools are relatively nonspecific. Identification of an early specific signature of ALD would aid in therapeutic intervention and recovery. In this study, the metabolic changes associated with ALD were examined using alcohol-fed male Ppara-null mouse as a model of ALD. Principal components analysis of the mass spectrometry-based urinary metabolic profile showed that alcohol-treated wild-type and Ppara-null mice could be distinguished from control animals without information on history of alcohol consumption. The urinary excretion of ethyl-sulfate, ethyl-beta-d-glucuronide, 4-hydroxyphenylacetic acid, and 4-hydroxyphenylacetic acid sulfate was elevated and that of the 2-hydroxyphenylacetic acid, adipic acid, and pimelic acid was depleted during alcohol treatment in both wild-type and the Ppara-null mice albeit to different extents. However, indole-3-lactic acid was exclusively elevated by alcohol exposure in Ppara-null mice. The elevation of indole-3-lactic acid is mechanistically related to the molecular events associated with development of ALD in alcohol-treated Ppara-null mice. This study demonstrated the ability of a metabolomics approach to identify early, noninvasive biomarkers of ALD pathogenesis in Ppara-null mouse model.
Resumo:
The tumor suppressor gene hypermethylated in cancer 1 (HIC1), located on human chromosome 17p13.3, is frequently silenced in cancer by epigenetic mechanisms. Hypermethylated in cancer 1 belongs to the bric à brac/poxviruses and zinc-finger family of transcription factors and acts by repressing target gene expression. It has been shown that enforced p53 expression leads to increased HIC1 mRNA, and recent data suggest that p53 and Hic1 cooperate in tumorigenesis. In order to elucidate the regulation of HIC1 expression, we have analysed the HIC1 promoter region for p53-dependent induction of gene expression. Using progressively truncated luciferase reporter gene constructs, we have identified a p53-responsive element (PRE) 500 bp upstream of the TATA-box containing promoter P0 of HIC1, which is sequence specifically bound by p53 in vitro as assessed by electrophoretic mobility shift assays. We demonstrate that this HIC1 p53-responsive element (HIC1.PRE) is necessary and sufficient to mediate induction of transcription by p53. This result is supported by the observation that abolishing endogenous wild-type p53 function prevents HIC1 mRNA induction in response to UV-induced DNA damage. Other members of the p53 family, notably TAp73beta and DeltaNp63alpha, can also act through this HIC1.PRE to induce transcription of HIC1, and finally, hypermethylation of the HIC1 promoter attenuates inducibility by p53.
Resumo:
Episcleral vein cauterization (EVC) is used in rats to generate a glaucoma model with high intraocular pressure (IOP). The long-term retinal damage in this glaucoma model, however, has not been accurately quantified. We report the location and amount of retinal ganglion cell (RGC) damage caused by (EVC) induced IOP elevation in two rat strains. IOP was raised in one eye of Wistar (N = 5) and Brown-Norway(B-N)(N = 7) rats by EVC and monitored monthly until IOP in contralateral eyes equalized at 5 months post-surgery. Animals were maintained for 3.5-4.5 additional months. B-N rats (N = 7) that had no EVC served as controls for this strain. Scotopic flash ERGs were recorded at baseline and just prior to euthanasia. Automated counts of all retrogradely labeled RGCs in retinal flat-mounts were determined and compared between contralateral eyes. RGC density maps were constructed and RGC size distribution was determined. Oscillatory potentials in the group of eyes which had elevated IOP were decreased at the time of euthanasia, when IOP had returned to normal. The group of normal B-N rats had similar RGC counts between contralateral eyes. In the experimental group the mean number of RGCs was not significantly different between control and experimental eyes, but 1 of 5 Wistar and 2 of 7 B-N experimental eyes had at least 30% fewer RGCs than contralateral control eyes. Total retinal area in B-N experimental eyes was higher compared to contralateral eyes. Cumulative IOP exposure of the experimental eyes was modestly correlated with RGC loss while oscillatory potentials appeared to be inversely related to RGC loss. In retinas with extensive (> 30% RGC loss) but not complete damage, smaller cells were preserved better than larger ones. The above results indicate that RGC loss in both Wistar and B-N strains is variable after a prolonged elevation of IOP via EVC. Such variability despite equivalent IOP levels and ERG abnormalities, suggests unknown factors that can protect IOP-stressed RGCs. Identification and enhancement of such factors could prove useful for glaucoma therapy.
Resumo:
Whether or not there are molecular differences, at the intra- and extracellular level, between aortic dilatation in patients with bicuspid (BAV) and those with a tricuspid aortic valve (TAV) has remained controversial for years. We have performed 2-dimensional gel electrophoresis and mass spectrometry coupled with dephosphorylation and phosphostaining experiments to reveal and define protein alterations and the high abundant structural phosphoproteins in BAV compared to TAV aortic aneurysm samples. 2-D gel patterns showed a high correlation in protein expression between BAV and TAV specimens (n=10). Few proteins showed significant differences, among those a phosphorylated form of heat shock protein (HSP) 27 with significantly lower expression in BAV compared to TAV aortic samples (p=0.02). The phosphoprotein tracing revealed four different phosphoproteins including Rho GDP dissociation inhibitor 1, calponin 3, myosin regulatory light chain 2 and four differentially phosphorylated forms of HSP27. Levels of total HSP27 and dually phosphorylated HSP27 (S78/S82) were investigated in an extended patient cohort (n=15) using ELISA. Total HSP27 was significantly lower in BAV compared to TAV patients (p=0.03), with no correlation in levels of phospho-HSP27 (S78/S82) (p=0.4). Western blots analysis showed a trend towards lower levels of phospho-HSP27 (S78) in BAV patients (p=0.07). Immunohistochemical analysis revealed that differences in HSP27 occur in the cytoplasma of VSMC's and not extracellularly. Alterations in HSP27 may give early evidence for intracellular differences in aortic aneurysm of patients with BAV and TAV. Whether HSP27 and the defined phosphoproteins have a specific role in BAV associated aortic dilatation remains to be elucidated.
Resumo:
Inherited factor XIII (FXIII) deficiency is known as one of the most rare blood coagulation disorder in humans. In the present study, phenotype and genotype of eight FXIII deficient Polish patients from five unrelated families were compared. The patients presented with a severe phenotype demonstrated by a high incidence of intracerebral haemorrhages (seven of eight patients), haemarthrosis (six patients) and bleeding due to trauma (five patients). Introduction of regular substitution with FXIII concentrate prevented spontaneous bleeding in seven patients. In all patients, mutations within the F13A gene have been identified revealing four missense mutations (Arg77Cys, Arg260Cys, Ala378Pro, Gly420Ser), one nonsense mutation (Arg661X), one splice site mutation (IVS5-1 G>A) and one small deletion (c.499-512del). One homozygous large deletion involving exon 15 was detected by failure of PCR product. The corresponding mutations resulted in severely reduced FXIII activity and FXIII A-subunit antigen concentration, while FXIII B-subunit antigen remained normal or mildly decreased. Structural analysis demonstrated that the novel Ala378Pro mutation may cause a disruption of the FXIII catalytic triad leading to a non-functional protein which presumably undergoes premature degradation. In conclusion, the severe phenotype with high incidence of intracranial bleeding and haemarthrosis was in accordance with laboratory findings on FXIII and with severe molecular defects of the F13A gene.
Resumo:
BACKGROUND Zebrafish is a clinically-relevant model of heart regeneration. Unlike mammals, it has a remarkable heart repair capacity after injury, and promises novel translational applications. Amputation and cryoinjury models are key research tools for understanding injury response and regeneration in vivo. An understanding of the transcriptional responses following injury is needed to identify key players of heart tissue repair, as well as potential targets for boosting this property in humans. RESULTS We investigated amputation and cryoinjury in vivo models of heart damage in the zebrafish through unbiased, integrative analyses of independent molecular datasets. To detect genes with potential biological roles, we derived computational prediction models with microarray data from heart amputation experiments. We focused on a top-ranked set of genes highly activated in the early post-injury stage, whose activity was further verified in independent microarray datasets. Next, we performed independent validations of expression responses with qPCR in a cryoinjury model. Across in vivo models, the top candidates showed highly concordant responses at 1 and 3 days post-injury, which highlights the predictive power of our analysis strategies and the possible biological relevance of these genes. Top candidates are significantly involved in cell fate specification and differentiation, and include heart failure markers such as periostin, as well as potential new targets for heart regeneration. For example, ptgis and ca2 were overexpressed, while usp2a, a regulator of the p53 pathway, was down-regulated in our in vivo models. Interestingly, a high activity of ptgis and ca2 has been previously observed in failing hearts from rats and humans. CONCLUSIONS We identified genes with potential critical roles in the response to cardiac damage in the zebrafish. Their transcriptional activities are reproducible in different in vivo models of cardiac injury.