224 resultados para Ice wedge
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
At the mid-latitudes of Utopia Planitia (UP), Mars, a suite of spatially-associated landforms exhibit geomorphological traits that, on Earth, would be consistent with periglacial processes and the possible freeze-thaw cycling of water. The suite comprises small-sized polygonally-patterned ground, polygon-junction and -margin pits, and scalloped, rimless depressions. Typically, the landforms incise a dark-toned terrain that is thought to be ice-rich. Here, we investigate the dark-toned terrain by using high resolution images from the HiRISE as well as near-infrared spectral-data from the OMEGA and CRISM. The terrain displays erosional characteristics consistent with a sedimentary nature and near-infrared spectra characterised by a blue slope similar to that of weathered basaltic-tephra. We also describe volcanic terrain that is dark-toned and periglacially-modified in the Kamchatka mountain-range of eastern Russia. The terrain is characterised by weathered tephra inter-bedded with snow, ice-wedge polygons and near-surface excess ice. The excess ice forms in the pore space of the tephra as the result of snow-melt infiltration and, subsequently, in-situ freezing. Based on this possible analogue, we construct a three-stage mechanism that explains the possible ice-enrichment of a broad expanse of dark-toned terrain at the mid-latitudes of UP: (1) the dark-toned terrain accumulates and forms via the regional deposition of sediments sourced from explosive volcanism; (2) the volcanic sediments are blanketed by atmospherically-precipitated (H2O) snow, ice or an admixture of the two, either concurrent with the volcanic-events or between discrete events; and, (3) under the influence of high obliquity or explosive volcanism, boundary conditions tolerant of thaw evolve and this, in turn, permits the migration, cycling and eventual formation of excess ice in the volcanic sediments. Over time, and through episodic iterations of this scenario, excess ice forms to decametres of depth. (C) 2015 Elsevier B.V. All rights reserved.
Resumo:
To evaluate a new surgical method, using calvarial bone graft combined with a wedge of irradiated homologous costal cartilage, for the revision repair of posttraumatic enophthalmos.
Resumo:
Since its discovery in Greenland ice cores, the millennial scale climatic variability of the last glacial period has been increasingly documented at all latitudes with studies focusing mainly on Marine Isotopic Stage 3 (MIS 3; 28–60 thousand of years before present, hereafter ka) and characterized by short Dansgaard-Oeschger (DO) events. Recent and new results obtained on the EPICA and NorthGRIP ice cores now precisely describe the rapid variations of Antarctic and Greenland temperature during MIS 5 (73.5–123 ka), a time period corresponding to relatively high sea level. The results display a succession of abrupt events associated with long Greenland InterStadial phases (GIS) enabling us to highlight a sub-millennial scale climatic variability depicted by (i) short-lived and abrupt warming events preceding some GIS (precursor-type events) and (ii) abrupt warming events at the end of some GIS (rebound-type events). The occurrence of these sub-millennial scale events is suggested to be driven by the insolation at high northern latitudes together with the internal forcing of ice sheets. Thanks to a recent NorthGRIP-EPICA Dronning Maud Land (EDML) common timescale over MIS 5, the bipolar sequence of climatic events can be established at millennial to sub-millennial timescale. This shows that for extraordinary long stadial durations the accompanying Antarctic warming amplitude cannot be described by a simple linear relationship between the two as expected from the bipolar seesaw concept. We also show that when ice sheets are extensive, Antarctica does not necessarily warm during the whole GS as the thermal bipolar seesaw model would predict, questioning the Greenland ice core temperature records as a proxy for AMOC changes throughout the glacial period.