2 resultados para Ice breaking operations

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

90.00% 90.00%

Publicador:

Resumo:

After the NEEM (Greenland) deep ice-core drilling was declared terminated with respect to developing stratigraphic climate reconstructions, efforts were turned toward collecting basal ice-sheet debris and, if possible, drilling into the bedrock itself. In 2010, several meters of banded debris-rich ice were obtained under normal ice-drilling operations with the NEEM version of the Hans Tausen (HT) drill, but further penetration was obstructed by a rock in the path of the drill head at 2537.36 m. During short campaigns in 2011 and 2012, attempts were made to penetrate further using various reinforced ice cutters mounted on the HT drill head, tailored to cut through rock. These had some success in penetrating coarse material, but produced severely damaged cutters. Additionally a 51 mm diameter diamond cutting tipped rock drill was adapted to fit the NEEM drill. With this device, several additional meters of core containing subglacial sediments, rocks and rock fragments were collected. With these tools 1.39 m of additional material were obtained during the 2011 field season, and 7.1 m during 2012. Subglacial water refreezing into the newly formed borehole hindered further penetration, and the bedrock interface was not reached before final closure of the NEEM Camp.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Carbonaceous particles that comprise organic carbon (OC) and elemental carbon (EC) are of increasing interest in climate research because of their influence on the radiation balance of the Earth. The radiocarbon determination of particulate OC and EC extracted from ice cores provides a powerful tool to reconstruct the long-term natural and anthropogenic emissions of carbonaceous particles. However, this C-14-based source apportionment method has not been applied for the firn section, which is the uppermost part of Alpine glaciers with a typical thickness of up to 50 m. In contrast to glacier ice, firn samples are more easily contaminated through drilling and handling operations. In this study, an alternative decontamination method for firn samples consisting of chiselling off the outer parts instead of rinsing them was developed and verified. The obtained procedural blank of 2.8 +/- 0.8 mu g C for OC is a factor of 2 higher compared to the rinsing method used for ice, but still relatively low compared to the typical OC concentration in firn samples from Alpine glaciers. The EC blank of 0.3 +/- 0.1 mu g C is similar for both methods. For separation of OC and EC for subsequent C-14 analysis, a thermal-optical method instead of the purely thermal method was applied for the first time to firn and ice samples, resulting in a reduced uncertainty of both the mass and C-14 determination. OC and EC concentrations as well as their corresponding fraction of modern for firn and ice samples from Fiescherhorn and Jungfraujoch agree well with published results, validating the new method.