8 resultados para ISOTACTIC POLYPROPYLENE

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Although U-clip anastomoses were studied for hemodynamics and patency, their potential for unimpeded growth after congenital cardiovascular surgery has not been investigated yet. In 53 children aged 2.1+/-3.3 years operated on between March 1998 and August 2005 growth of U-clip (U) vs. polypropylene running sutured (P) anastomoses in coarctation repair (Coarc; n=26), bi-directional Glenn (BDG; n=13) and arterial switch operation (ASO; n=14) was retrospectively analysed. Coarc showed 2.39+/-4.33 vs. 3.09+/-2.24 mm of growth during the observation period (21+/-16 vs. 30+/-27 months); no growth (0 vs.16%), restenosis (14 vs. 37%) and reinterventions (14 vs. 11%) were similar (all in U vs. P, P=ns). BDG showed 3.68+/-3.43 vs. 2.50+/-2.55 mm (P=ns) of growth during 15+/-5 vs. 29+/-18 months (P=0.046); no growth (17 vs. 0%), stenosis (0 vs. 14%) and reinterventions (0%) were similar in U vs. P, respectively (P=ns). Main pulmonary artery (MPA) anastomosis in ASO showed 0.28+/-1.73 vs. 1.30+/-3.16 mm of growth during 8+/-14 vs. 28+/-28 months; no growth (60 vs. 14%), stenosis (50 vs. 63%) and reinterventions (0%) were similar (all in U vs. P, P=ns). Anastomotic growth, stenosis and reintervention rates show no difference between interrupted U-clip and polypropylene running sutured technique in Coarc repair, BDG and MPA anastomosis in ASO.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Introduction: Small animal models are widely used in basic research. However, experimental systems requiring extracorporeal circuits are frequently confronted with limitations related to equipment size. This is particularly true for oxygenators in systems with limited volumes. Thus we aimed to develop and validate an ultra mini-oxygenator for low-volume, buffer-perfused systems. Methods: We have manufactured a series of ultra mini-oxygenators with approximately 175 aligned, microporous, polypropylene hollow fibers contained inside a shell, which is sealed at each of the two extremities to isolate perfusate and gas compartments. With this construction, gas passes through hollow fibers, while perfusate circulates around fibers. Performance of ultra mini-oxygenators (oxygen partial pressure (PO2 ), gas and perfusate flow, perfusate pressure and temperature drop) were assessed with modified Krebs-Henseleit buffer in an in vitro perfusion circuit and an ex vivo rat heart preparation. Results: Mean priming volume of ultra mini-oxygenators was 1.2±0.5 mL and, on average, 86±6% of fibers were open (n=17). In vitro, effective oxygenation (PO2=400-500 mmHg) was achieved for all flow rates up to 50 mL/min and remained stable for at least 2 hours (n=5). Oxygenation was also effective and stable (PO2=456±40 mmHg) in the isolated heart preparation for at least 60 minutes ("venous" PO2=151±11 mmHg; n=5). Conclusions: We have established a reproducible procedure for fabrication of ultra mini-oxygenators, which provide reliable and stable oxygenation for at least 60-120 min. These oxygenators are especially attractive for pre-clinical protocols using small, rather than large, animals.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Using variothermal polymer micro-injection molding, disposable arrays of eight polymer micro-cantilevers each 500 μm long, 100 μm wide and 25 μm thick were fabricated. The present study took advantage of an easy flow grade polypropylene. After gold coating for optical read-out and asymmetrical sensitization, the arrays were introduced into the Cantisens(®) Research system to perform mechanical and functional testing. We demonstrate that polypropylene cantilevers can be used as biosensors for medical purposes in the same manner as the established silicon ones to detect single-stranded DNA sequences and metal ions in real-time. A differential signal of 7 nm was detected for the hybridization of 1 μM complementary DNA sequences. For 100 nM copper ions the differential signal was found to be (36 ± 5) nm. Nano-mechanical sensing of medically relevant, nanometer-size species is essential for fast and efficient diagnosis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Understanding and controlling the structural anisotropies of injection-molded polymers is vital for designing products such as cantilever-based sensors. Such micro-cantilevers are considered as cost-effective alternatives to single-crystalline silicon-based sensors. In order to achieve similar sensing characteristics,structure and morphology have to be controlled by means of processing parameters including mold temperature and injection speed. Synchrotron radiation-based scanning small- (SAXS) and wide-angle x-ray scattering techniques were used to quantify crystallinity and anisotropy in polymer micro-cantilevers with micrometer resolution in real space. SAXS measurements confirmed the lamellar nature of the injection-molded semi-crystalline micro-cantilevers. The homogenous cantilever material exhibits a lamellar periodicity increasing with mold temperature but not with injection speed. We demonstrate that micro-cantilevers made of semi-crystalline polymers such as polyvinylidenefluoride, polyoxymethylene, and polypropylene show the expected strong degree of anisotropy along the injection direction.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Microinjection molding was employed to fabricate low-cost polymer cantilever arrays for sensor applications. Cantilevers with micrometer dimensions and aspect ratios as large as 10 were successfully manufactured from polymers, including polypropylene and polyvinylidenfluoride. The cantilevers perform similar to the established silicon cantilevers, with Q-factors in the range of 10–20. Static deflection of gold coated polymer cantilevers was characterized with heat cycling and self-assembled monolayer formation of mercaptohexanols. A hybrid mold concept allows easy modification of the surface topography, enabling customized mechanical properties of individual cantilevers. Combined with functionalization and surface patterning, the cantilever arrays are qualified for biomedical applications

Relevância:

10.00% 10.00%

Publicador:

Resumo:

PURPOSE The purpose of this study was to investigate whether there are microbiological differences in bacterial samples collected from labial piercings made of different materials. METHODS Sterile piercings of 4 materials were randomly allocated to 80 pierced subjects. After 2 weeks, microbiologic samples were collected and processed by checkerboard DNA-DNA hybridization methods. Wilcoxon signed ranks and Mann-Whitney tests were used for statistical analysis (adjustment for multiple comparisons). RESULTS There were no statistically significant differences between material groups in relation to baseline data. In samples from stainless steel piercings, the total microbial load was significantly higher than the other materials (P<.05). Ten (mainly periopathogenic) species were found at significantly higher levels (P<.001) on steel than on polypropylene and/or polytetrafluoroethylene piercings. CONCLUSIONS Labial piercings made of stainless steel could promote the development of a pathogenic biofilm.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

OBJECTIVES Oxygenation of blood and other physiological solutions are routinely required in fundamental research for both in vitro and in vivo experimentation. However, very few oxygenators with suitable priming volumes (<2-3 ml) are available for surgery in small animals. We have designed a new, miniaturized membrane oxygenator and investigated the oxygen-transfer performance using both buffer and blood perfusates. METHODS The mini-oxygenator was designed with a central perforated core-tube surrounded by parallel-oriented microporous polypropylene hollow fibres, placed inside a hollow shell with a lateral-luer outlet, and sealed at both extremities. With this design, perfusate is delivered via the core-tube to the centre of the mini-oxygenator, and exits via the luer port. A series of mini-oxygenators were constructed and tested in an in vitro perfusion circuit by monitoring oxygen transfer using modified Krebs-Henseleit buffer or whole porcine blood. Effects of perfusion pressure and temperature over flows of 5-60 ml × min(-1) were assessed. RESULTS Twelve mini-oxygenators with a mean priming volume of 1.5 ± 0.3 ml were evaluated. With buffer, oxygen transfer reached a maximum of 14.8 ± 1.0 ml O2 × l(-1) (pO2: 450 ± 32 mmHg) at perfusate flow rates of 5 ml × min(-1) and decreased with an increase in perfusate flow to 7.8 ± 0.7 ml ml O2 × l(-1) (pO2: 219 ± 24 mmHg) at 60 ml × min(-1). Similarly, with blood perfusate, oxygen transfer also decreased as perfusate flow increased, ranging from 33 ± 5 ml O2 × l(-1) at 5 ml × min(-1) to 11 ± 2 ml O2 × l(-1) at 60 ml × min(-1). Furthermore, oxygen transfer capacity remained stable with blood perfusion over a period of at least 2 h. CONCLUSIONS We have developed a new miniaturized membrane oxygenator with an ultra-low priming volume (<2 ml) and adequate oxygenation performance. This oxygenator may be of use in overcoming current limitations in equipment size for effective oxygenation in low-volume perfusion circuits, such as small animal extracorporeal circulation and ex vivo organ perfusion.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Gebiet: Chirurgie Biomedizintechnik Biophysik Transplantationsmedizin Kardiologie Abstract: OBJECTIVES: – Oxygenation of blood and other physiological solutions are routinely required in fundamental research for both in vitro and in vivo experimentation. However, very few oxygenators with suitable priming volumes (<2-3 ml) are available for surgery in small animals. We have designed a new, miniaturized membrane oxygenator and investigated the oxygen-transfer performance using both buffer and blood perfusates. – – METHODS: – The mini-oxygenator was designed with a central perforated core-tube surrounded by parallel-oriented microporous polypropylene hollow fibres, placed inside a hollow shell with a lateral-luer outlet, and sealed at both extremities. With this design, perfusate is delivered via the core-tube to the centre of the mini-oxygenator, and exits via the luer port. A series of mini-oxygenators were constructed and tested in an in vitro perfusion circuit by monitoring oxygen transfer using modified Krebs-Henseleit buffer or whole porcine blood. Effects of perfusion pressure and temperature over flows of 5-60 ml × min(-1) were assessed. – – RESULTS: – Twelve mini-oxygenators with a mean priming volume of 1.5 ± 0.3 ml were evaluated. With buffer, oxygen transfer reached a maximum of 14.8 ± 1.0 ml O2 × l(-1) (pO2: 450 ± 32 mmHg) at perfusate flow rates of 5 ml × min(-1) and decreased with an increase in perfusate flow to 7.8 ± 0.7 ml ml O2 × l(-1) (pO2: 219 ± 24 mmHg) at 60 ml × min(-1). Similarly, with blood perfusate, oxygen transfer also decreased as perfusate flow increased, ranging from 33 ± 5 ml O2 × l(-1) at 5 ml × min(-1) to 11 ± 2 ml O2 × l(-1) at 60 ml × min(-1). Furthermore, oxygen transfer capacity remained stable with blood perfusion over a period of at least 2 h. – – CONCLUSIONS: – We have developed a new miniaturized membrane oxygenator with an ultra-low priming volume (<2 ml) and adequate oxygenation performance. This oxygenator may be of use in overcoming current limitations in equipment size for effective oxygenation in low-volume perfusion circuits, such as small animal extracorporeal circulation and ex vivo organ perfusion. – – © The Author 2015. Published by Oxford University Press on behalf of the European Association for Cardio-Thoracic Surgery. All rights reserved.