58 resultados para INSECT VECTORS

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Unlike all other organisms, parasitic protozoa of the family Trypanosomatidae maintain a large cellular pool of proline that, together with the alanine pool, serve as alternative carbon sources as well as reservoirs of organic osmolytes. These reflect adaptation to their insect vectors whose haemolymphs are exceptionally rich in the two amino acids. In the present study we identify and characterize a new neutral amino acid transporter, LdAAP24, that translocates proline and alanine across the Leishmania donovani plasma membrane. This transporter fulfils multiple functions: it is the sole supplier for the intracellular pool of proline and contributes to the alanine pool; it is essential for cell volume regulation after osmotic stress; and it regulates the transport and homoeostasis of glutamate and arginine, none of which are its substrates. Notably, we provide evidence that proline and alanine exhibit different roles in the parasitic response to hypotonic shock; alanine affects swelling, whereas proline influences the rate of volume recovery. On the basis of our data we suggest that LdAAP24 plays a key role in parasite adaptation to its varying environments in host and vector, a phenomenon essential for successful parasitism.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Salivary gland proteins of Culicoides spp. have been suggested to be among the main allergens inducing IgE-mediated insect bite hypersensitivity (IBH), an allergic dermatitis of the horse. The aim of our study was to identify, produce and characterize IgE-binding salivary gland proteins of Culicoides nubeculosus relevant for IBH by phage surface display technology. A cDNA library constructed with mRNA derived from C. nubeculosus salivary glands was displayed on the surface of filamentous phage M13 and enriched for clones binding serum IgE of IBH-affected horses. Ten cDNA inserts encoding putative salivary gland allergens were isolated and termed Cul n 2 to Cul n 11. However, nine cDNA sequences coded for truncated proteins as determined by database searches. The cDNA sequences were amplified by PCR, subcloned into high level expression vectors and expressed as hexahistidine-tagged fusion proteins in Escherichia coli. Preliminary ELISA results obtained with these fusions confirmed the specific binding to serum IgE of affected horses. Therefore, the putative complete open reading frames derived from BLAST analyses were isolated by RACE-PCR and subcloned into expression vectors. The full length proteins expressed in Escherichia coli showed molecular masses in the range of 15.5-68.7 kDa in SDS-PAGE in good agreement with the masses calculated from the predicted protein sequences. Western blot analyses of all recombinant allergens with a serum pool of IBH-affected horses showed their ability to specifically bind serum IgE of sensitized horses, and ELISA determinations yielded individual horse recognition patterns with a frequency of sensitization ranging from 13 to 57%, depending on the allergen tested. The in vivo relevance of eight of the recombinant allergens was demonstrated in intradermal skin testing. For the two characterized allergens Cul n 6 and Cul n 11, sensitized horses were not available for intradermal tests. Control horses without clinical signs of IBH did not develop any relevant immediate hypersensitivity reactions to the recombinant allergens. The major contribution of this study was to provide a repertoire of recombinant salivary gland allergens repertoire from C. nubeculosus potentially involved in the pathogenesis of IBH as a starting basis for the development of a component-resolved serologic diagnosis of IBH and, perhaps, for the development of single horse tailored specific immunotherapy depending on their component-resolved sensitization patterns.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Insect bite hypersensitivity (IBH) is an IgE-mediated seasonal dermatitis of the horses associated with bites of Simulium (black fly) and Culicoides (midge) species. Although cross-reactivity between Simulium and Culicoides salivary gland extracts has been demonstrated, the molecular nature of the allergens responsible for the observed cross-reactivity remains to be elucidated. In this report we demonstrate for the first time in veterinary medicine that a homologous allergen, present in the salivary glands of both insects, shows extended IgE cross-reactivity in vitro and in vivo. The cDNA sequences coding for both antigen 5 like allergens termed Sim v 1 and Cul n 1 were amplified by PCR, subcloned in high level expression vectors, and produced as [His](6)-tagged proteins in Escherichia coli. The highly pure recombinant proteins were used to investigate the prevalence of sensitization in IBH-affected horses by ELISA and their cross-reactive nature by Western blot analyses, inhibition ELISA and intradermal skin tests (IDT). The prevalence of sensitization to Sim v 1 and Cul n 1 among 48 IBH-affected horses was 37% and 35%, respectively. In contrast, serum IgE levels to both allergens in 24 unaffected horses did not show any value above background. Both proteins strongly bound serum IgE from IBH-affected horses in Western blot analyses, demonstrating the allergenic nature of the recombinant proteins. Extended inhibition ELISA experiments clearly showed that Sim v 1 in fluid phase is able to strongly inhibit binding of serum IgE to solid phase coated Cul n 1 in a concentration dependent manner and vice versa. This crucial experiment shows that the allergens share common IgE-binding epitopes. IDT with Sim v 1 and Cul n 1 showed clear immediate and late phase reactions to the allergen challenges IBH-affected horses, whereas unaffected control horses do not develop relevant immediate hypersensitivity reactions. In some horses, however, mild late phase reactions were observed 4h post-challenge, a phenomenon reported to occur also in challenge experiments with Simulium and Culicoides crude extracts probably related to lipopolysaccaride contaminations which are also present in E. coli-expressed recombinant proteins. In conclusion our data demonstrate that IgE-mediated cross-reactivity to homologous allergens, a well-known clinically relevant phenomenon in human allergy, also occurs in veterinary allergy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Lymphocytic choriomeningitis virus (LCMV) exhibits natural tropism for dendritic cells and represents the prototypic infection that elicits protective CD8(+) T cell (cytotoxic T lymphocyte (CTL)) immunity. Here we have harnessed the immunobiology of this arenavirus for vaccine delivery. By using producer cells constitutively synthesizing the viral glycoprotein (GP), it was possible to replace the gene encoding LCMV GP with vaccine antigens to create replication-defective vaccine vectors. These rLCMV vaccines elicited CTL responses that were equivalent to or greater than those elicited by recombinant adenovirus 5 or recombinant vaccinia virus in their magnitude and cytokine profiles, and they exhibited more effective protection in several models. In contrast to recombinant adenovirus 5, rLCMV failed to elicit vector-specific antibody immunity, which facilitated re-administration of the same vector for booster vaccination. In addition, rLCMV elicited T helper type 1 CD4+ T cell responses and protective neutralizing antibodies to vaccine antigens. These features, together with low seroprevalence in humans, suggest that rLCMV may show utility as a vaccine platform against infectious diseases and cancer.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The transmission of honeybee pathogens by free-flying pests, such as small hive beetles (=SHB), would be independent of bees and beekeepers and thereby constitute a new challenge for pathogen control measures. Here we show that larval and adult SHB become contaminated with Paenibacillus larvae spores when exposed to honeybee brood combs with clinical American foulbrood (=AFB) symptoms in the laboratory. This contamination persists in pupae and newly emerged adults. After exposure to contaminated adult SHB, honeybee field colonies showed higher numbers of P. larvae spores in worker and honey samples after five weeks. Despite these results, the rather low number of P. larvae spores on adult SHB suggests that clinical AFB outbreaks are not likely. However, even small spore numbers can be sufficient to spread P. larvae. Therefore, our data clearly show that SHB are vectors of P. larvae. We suggest considering the role of SHB in AFB control in areas where both pests are established.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Insect bite hypersensitivity (IBH) is an IgE-mediated dermatitis caused by bites of midges from the genus Culicoides. We have shown previously that peripheral blood mononuclear cells (PBMC) from IBH-affected horses produce higher levels of IL-4 and lower levels of IL-10 and TGF-beta1 than those from healthy horses, suggesting that IBH is associated with a reduced regulatory immune response. FoxP3 is a crucial marker of regulatory T cells (Tregs). Here we have determined the proportion of CD4(+)CD25(+)FoxP3(+) T cells by flow cytometry in PBMC directly after isolation or after stimulation with Culicoides extract or a control antigen (Tetanus Toxoid). There were no differences between healthy and IBH horses either in the proportion of FoxP3(+)CD4(+)CD25(+) cells in freshly isolated PBMC or in the following stimulation with Tetanus Toxoid. However, upon stimulation of PBMC with the allergen, expression of FoxP3 by CD4(+)CD25(+high) and CD4(+)CD25(+dim) cells was significantly higher in healthy than in IBH horses. Addition of recombinant IL-4 to PBMC from healthy horses stimulated with the allergen significantly decreased the proportion of FoxP3 expressing cells within CD4(+)CD25(+high). These results suggest that IBH is associated with a decreased number of allergen-induced Tregs. This could be a consequence of the increased IL-4 production by PBMC of IBH-affected horses.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Equine insect bite hypersensitivity (IBH) is a seasonally recurrent, pruritic skin disorder caused by an IgE-mediated reaction to salivary proteins of biting flies, predominantly of the genus Culicoides. The aim of this study was to define T cell subsets and cytokine profile in the skin of IBH-affected Icelandic horses with particular focus on the balance between T helper (Th) 1, Th2 and T regulatory (Treg) cells. Distribution and number of CD4+, CD8+ and Forkhead box P3 (FoxP3)+ T cells were characterized by immunohistochemical staining in lesional and non-lesional skin of moderately and severely IBH-affected horses (n=14) and in the skin of healthy control horses (n=10). Using real-time quantitative reverse transcription-polymerase chain reaction, mRNA expression levels of Th2 cytokines (Interleukin (IL)-4, IL-5, IL-13), Th1 cytokines (Interferon-gamma), regulatory cytokines (Transforming Growth Factor beta1, IL-10) and the Treg transcription factor FoxP3 were measured in skin and blood samples. Furthermore, Culicoides nubeculosus specific serum IgE levels were assessed. Lesions of IBH-affected horses contained significantly higher numbers of CD4+ cells than skin of healthy control horses. Furthermore, the total number of T cells (CD4+ and CD8+) was significantly increased in lesional compared to non-lesional skin and there was a tendency (p=0.07) for higher numbers of CD4+ cells in lesional compared to non-lesional skin. While the number of FoxP3+ T cells did not differ significantly between the groups, the ratio of Foxp3 to CD4+ cells was significantly lower in lesions of severely IBH-affected horses than in moderately affected or control horses. Interestingly, differences in FoxP3 expression were more striking at the mRNA level. FoxP3 mRNA levels were significantly reduced in lesional skin, compared both to non-lesional and to healthy skin and were also significantly lower in non-lesional compared to healthy skin. Expression levels of IL-13, but not IL-4 or IL-5, were significantly elevated in lesional and non-lesional skin of IBH-affected horses. IL-10 levels were lower in lesional compared to non-lesional skin (p=0.06) and also lower (p=0.06) in the blood of IBH-affected than of healthy horses. No significant changes were observed regarding blood expression levels of Th1 and Th2 cytokines or FoxP3. Finally, IBH-affected horses had significantly higher Culicoides nubeculosus specific serum IgE levels than control horses. The presented data suggest that an imbalance between Th2 and Treg cells is a characteristic feature in IBH. Treatment strategies for IBH should thus aim at restoring the balance between Th2 and Treg cells.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Trypanosoma brucei is the causative agent of human African sleeping sickness and Nagana in cattle. In addition to being an important pathogen T. brucei has developed into a model system in cell biology.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Insect bite hypersensitivity (IBH) is an allergic dermatitis of horses caused by IgE-mediated reactions to bites of Culicoides and sometimes Simulium spp. The allergens causing IBH are probably salivary gland proteins from these insects, but they have not yet been identified. The aim of our study was to identify the number and molecular weight of salivary gland extract (SGE) proteins derived from Culicoides nubeculosus which are able to bind IgE antibodies (ab) from the sera of IBH-affected horses. Additionally, we sought to investigate the IgG subclass (IgGa, IgGb and IgGT) reactivity to these proteins. Individual IgE and IgG subclass responses to proteins of C. nubeculosus SGE were evaluated by immunoblot in 42 IBH-affected and 26 healthy horses belonging to different groups (Icelandic horses born in Iceland, Icelandic horses and horses from different breeds born in mainland Europe). Additionally, the specific antibody response was studied before exposure to bites of Culicoides spp. and over a period of 3 years in a cohort of 10 Icelandic horses born in Iceland and imported to Switzerland. Ten IgE-binding protein bands with approximate molecular weights of 75, 66, 52, 48, 47, 32, 22/21, 19, 15, 13/12 kDa were found in the SGE. Five of these bands bound IgE from 50% or more of the horse sera. Thirty-nine of the 42 IBH-affected horses but only 2 of the 26 healthy horses showed IgE-binding to the SGE (p<0.000001). Similarly, more IBH-affected than healthy horses had IgGa ab binding to the Culicoides SGE (19/22 and 9/22, respectively, p<0.01). Sera of IBH-affected horses contained IgE, IgGa and IgGT but not IgGb ab against significantly more protein bands than the sera of the healthy horses. The cohort of 10 Icelandic horses confirmed these results and showed that Culicoides SGE specific IgE correlates with onset of IBH. IBH-affected horses that were born in Iceland had IgGa and IgGT ab (p< or =0.01) as well as IgE ab (p=0.06) against a significantly higher number of SGE proteins than IBH-affected horses born in mainland Europe. The present study shows that Culicoides SGE contains at least 10 potential allergens for IBH and that IBH-affected horses show a large variety of IgE-binding patterns in immunoblots. These findings are important for the future development of a specific immunotherapy with recombinant salivary gland allergens.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

REASONS FOR PERFORMING STUDY: Insect bite hypersensitivity (IBH) is an IgE-mediated allergic dermatitis caused by bites of Culicoides and Simulium species, and improved means of diagnosis are required. OBJECTIVES: The cellular antigen simulation test (CAST) with C. nubeculosus and S. vittatum extracts was assessed in a population of IBH-affected and healthy horses. Variations in test results over a one year period and possible cross-reactivity between different insect extracts was studied. METHODS: A total of 314 mature horses were studied using the CAST. Influence of severity of clinical signs, gender and age were evaluated, and 32 horses were tested repeatedly over one year. The kappa reliability test was used to assess agreement of the test results with different insect extracts. RESULTS: Horses with IBH had significantly higher sLT release than controls with C. nubeculosus and S. vittatum. The highest diagnostic sensitivity and specificity levels were attained when using adult C. nubeculosus extracts with the CAST (78% and 97%, respectively), suggesting that most horses with IBH are sensitised against Culicoides allergens. A proportion of IBH-affected horses was found to be sensitised to allergens of Simulium spp. in addition to those of C. nubeculosus. The CAST with C. nubeculosus had positive and negative predictive values > or = 80% for a true prevalence of IBH of 12-52%. In the follow-up study, the proportion of IBH-affected horses with a positive test result ranged from 90% in November to 68% in March. Severity of clinical signs or age did not influence test results significantly. However, IBH-affected males achieved significantly more positive test results than IBH-affected females. CONCLUSIONS: The CAST with adult C. nubeculosus has high specificity and good sensitivity for diagnosis of IBH. Horses with IBH are mainly sensitised to Culicoides allergens, and some horses are additionally also sensitised to allergens in Simulium spp. POTENTIAL RELEVANCE: The CAST is likely to be a useful test for diagnosis of IBH, even allowing the identification of IBH-affected but asymptomatic horses. This test may also help in further characterisation of allergens involved in this condition.