2 resultados para INDUCED MYOPATHY
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
Introduction Leuprolide acetate is a synthetic analog of gonadotropin-releasing hormone used for the treatment of prostate cancer. Its side effects are hot flashes, nausea, and fatigue. We report a case of a patient with proximal inflammatory myopathy accompanied by severe rhabdomyolysis and renal failure following the second application of leuprolide acetate. Drug withdrawal and steroid therapy resulted in remission within six weeks of the diagnosis. To the best of our knowledge, our case report describes the second case of leuprolide acetate-induced inflammatory myopathy and the first case of severe leuprolide acetate-induced rhabdomyolysis and renal failure in the literature. Case presentation A 64-year-old Swiss Caucasian man was admitted to the hospital because of progressive proximal muscle weakness, dyspnea, and oliguria. He had been treated twice with leuprolide acetate in monthly doses. We performed a muscle biopsy, which excluded other causes of myopathy. The patient's renal failure and rhabdomyolysis were treated with rehydration and steroid therapy. Conclusion The aim of our case report is to highlight the rare but severe side effects associated with leuprolide acetate therapy used to treat patients with inflammatory myopathy: severe rhabdomyolysis and renal failure.
Resumo:
The lethal toxin of Clostridium sordellii (TcsL) evokes severe, mostly fatal disease patterns like toxic shock syndrome in humans and animals. Since this large clostridial toxin-induced severe muscle damaging when injected intramuscularly into mice, we hypothesized that TcsL is also associated with equine atypical myopathy (EAM), a fatal myodystrophy of hitherto unknown etiology. Transmission electron microscopy revealed skeletal and heart muscles of EAM-affected horses to undergo degeneration ultrastructurally similar to the damage found in TcsL-treated mice. Performing immunohistochemistry, myofibers of EAM-affected horses specifically reacted with sera derived from horses with EAM as well as an antibody specific for the N-terminal part of TcsL, while both antibodies failed to bind to the myofibers of either healthy horses or those with other myopathies. The presence of TcsL in myofibers of horses with EAM suggests that it plays a role as trigger or even as lethal factor in this disease.