2 resultados para INDUCED BREAKDOWN

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND: Peri-implantitis is associated with the presence of submarginal plaque, soft-tissue inflammation and advanced breakdown of the supporting bone. The progression of peri-implantitis following varying periods of continuing plaque accumulation has been studied in animal models. OBJECTIVE: The aim of the current experiment was to study the progression of peri-implantitis around implants with different surface roughness. MATERIAL AND METHODS: In five beagle dogs, three implants with either a sandblasted acid-etched surface (SLA) or a polished surface (P) were installed bilaterally in the edentulous premolar regions. After 3 months on a plaque control regimen, experimental peri-implantitis was induced by ligature placement and plaque accumulation was allowed to progress until about 40% of the height of the supporting bone had been lost. After this 4-month period, ligatures were removed and plaque accumulation was continued for an additional 5 months. Radiographs of all implant sites were obtained before and after 'active' experimental peri-implantitis as well as at the end of the experiment. Biopsies were harvested and the tissue samples were prepared for light microscopy. The sections were used for histometric and morphometric examinations. RESULTS: The radiographic examinations indicated that similar amounts of bone loss occurred at SLA and P sites during the active breakdown period, while the progression of bone loss was larger at SLA than at polished sites following ligature removal. The histological examination revealed that both bone loss and the size of the inflammatory lesion in the connective tissue were larger in SLA than in polished implant sites. The area of plaque was also larger at implants with an SLA surface than at implants with a polished surface. CONCLUSION: It is suggested that the progression of peri-implantitis, if left untreated, is more pronounced at implants with a moderately rough surface than at implants with a polished surface.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

During senescence, chlorophyll (chl) is metabolized to colorless nonfluorescent chl catabolites (NCCs). A central reaction of the breakdown pathway is the ring cleavage of pheophorbide (pheide) a to a primary fluorescent chl catabolite. Two enzymes catalyze this reaction, pheide a oxygenase (PAO) and red chl catabolite reductase. Five NCCs and three fluorescent chl catabolites (FCCs) accumulated during dark-induced chl breakdown in Arabidopsis (Arabidopsis thaliana). Three of these NCCs and one FCC (primary fluorescent chl catabolite-1) were identical to known catabolites from canola (Brassica napus). The presence in Arabidopsis of two modified FCCs supports the hypothesis that modifications, as present in NCCs, occur at the level of FCC. Chl degradation in Arabidopsis correlated with the accumulation of FCCs and NCCs, as well as with an increase in PAO activity. This increase was due to an up-regulation of Pao gene expression. In contrast, red chl catabolite reductase is not regulated during leaf development and senescence. A pao1 knockout mutant was identified and analyzed. The mutant showed an age- and light-dependent cell death phenotype on leaves and in flowers caused by the accumulation of photoreactive pheide a. In the dark, pao1 exhibited a stay-green phenotype. The key role of PAO in chl breakdown is discussed.