34 resultados para IMPLANT STABILITY
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
Background: Resonance frequency analysis (RFA) is a noninvasive technique for the quantitative assessment of implant stability. Information on the implant stability quotient (ISQ) of transmucosally inserted implants is limited. Purpose: The aim of this investigation was to compare the ISQ of conventionally inserted implants by raising a muco-periostal flap with implants inserted using a flapless procedure. Materials and Methods: Forty elderly patients with complete edentulous maxilla were consecutively admitted for treatment with implant-supported prostheses. A computer tomography was obtained for the computer-assisted implant planning. One hundred ten implants were placed conventionally in 23 patients (flap-group) and 85 implants in 17 patients by means of the flapless method (flapless-group) using a stereolithographic template. RFA measurements were performed after implant placement (baseline) and after a healing time of 12 weeks (reentry). Results: All implants exhibited clinically and radiographically successful osseointegration. Bone level did not change significantly neither for genders nor type of surgical protocol. Mean ISQ values of the flapless-group were significantly higher at baseline (p < .001) and at reentry (p < .001) compared with the flap-group. The ISQ values were significantly lower at reentry compared with baseline for the flap-group (p = .028) but not for the flapless-group. This group showed a moderate, but insignificant increase. RFA measurements of males resulted in ISQ values that were thoroughly higher as compared with females at both time-points in both groups. Correlation between RFA and bone level was not found. Conclusions: The flapless procedure showed favorable conditions with regard to implant stability and crestal bone level. Some changes of the ISQ values that represent primary (mechanical) and secondary (bone remodeling) implant stability were observed in slight favor of the flapless method and male patients. In properly planned and well-selected cases, the minimal invasive transmucosal technique using a drill-guide is a safe procedure.
Resumo:
PURPOSE: Two noninvasive methods to measure dental implant stability are damping capacity assessment (Periotest) and resonance frequency analysis (Osstell). The objective of the present study was to assess the correlation of these 2 techniques in clinical use. MATERIALS AND METHODS: Implant stability of 213 clinically stable loaded and unloaded 1-stage implants in 65 patients was measured in triplicate by means of resonance frequency analysis and Periotest. Descriptive statistics as well as Pearson's, Spearman's, and intraclass correlation coefficients were calculated with SPSS 11.0.2. RESULTS: The mean values were 57.66 +/- 8.19 implant stability quotient for the resonance frequency analysis and -5.08 +/- 2.02 for the Periotest. The correlation of both measuring techniques was -0.64 (Pearson) and -0.65 (Spearman). The single-measure intraclass correlation coefficients for the ISQ and Periotest values were 0.99 and 0.88, respectively (95% CI). No significant correlation of implant length with either resonance frequency analysis or Periotest could be found. However, a significant correlation of implant diameter with both techniques was found (P < .005). The correlation of both measuring systems is moderate to good. It seems that the Periotest is more susceptible to clinical measurement variables than the Osstell device. The intraclass correlation indicated lower measurement precision for the Periotest technique. Additionally, the Periotest values differed more from the normal (Gaussian) curve of distribution than the ISQs. Both measurement techniques show a significant correlation to the implant diameter. CONCLUSION: Resonance frequency analysis appeared to be the more precise technique.
Resumo:
PURPOSE: The aim of this prospective case series study was to evaluate the short-term success rates of titanium screw-type implants with a chemically modified sand-blasted and acid-etched (mod SLA) surface after 3 weeks of healing. MATERIAL AND METHODS: A total of 56 implants were inserted in the posterior mandible of 40 partially edentulous patients exhibiting bone densities of class I to III. After a healing period of 3 weeks, all implants were functionally loaded with a screw-retained crown or fixed dental prosthesis. The patients were recalled at weeks 4, 7, 12, and 26 for monitoring and assessment of clinical and radiological parameters, including implant stability quotient (ISQ) measurements. RESULTS: None of the implants failed to integrate. However, two implants were considered "spinners" at day 21 and left unloaded for an extended period. Therefore, 96.4% of the inserted implants were loaded according to the protocol tested. All 56 implants including the "spinners" showed favorable clinical and radiographic findings at the 6-month follow-up examination. The ISQ values increased steadily throughout the follow-up period. At the time of implant placement, the range of ISQ values exhibited a mean of 74.33, and by week 26, a mean value of 83.82 was recorded. Based on strict criteria, all 56 implants were considered successfully integrated, resulting in a 6-month survival and success rate of 100.0%. CONCLUSION: This prospective study using an early-loading protocol after 3 weeks of healing demonstrated that titanium implants with the modified SLA surface can achieve and maintain successful tissue integration over a period of at least 6 months. The ISQ method seems feasible to monitor implant stability during the initial wound-healing period.
Resumo:
BACKGROUND Deproteinized bovine bone mineral (DBBM) is one of the best-documented bone substitute materials for sinus floor elevation (SFE). PURPOSE DBBM is available in two particle sizes. Large particles are believed to facilitate improved neoangiogenesis compared with small ones. However, their impact on the rate of new bone formation, osteoconduction, and DBBM degradation has never been reported. In addition, the implant stability quotient (ISQ) has never been correlated to bone-to-implant contact (BIC) after SFE with simultaneous implant placement. MATERIALS AND METHODS Bilateral SFE with simultaneous implant placement was performed in 10 Göttingen minipigs. The two sides were randomized to receive large or small particle size DBBM. Two groups of 5 minipigs healed for 6 and 12 weeks, respectively. ISQ was recorded immediately after implant placement and at sacrifice. Qualitative histological differences were described and bone formation, DBBM degradation, BIC and bone-to-DBBM contact (osteoconduction) were quantified histomorphometrically. RESULTS DBBM particle size had no qualitative or quantitative impact on the amount of newly formed bone, DBBM degradation, or BIC for either of the healing periods (p > 0.05). Small-size DBBM showed higher osteoconduction after 6 weeks than large-size DBBM (p < 0.001). After 12 weeks this difference was compensated. There was no significant correlation between BIC and ISQ. CONCLUSION Small and large particle sizes were equally predictable when DBBM was used for SFE with simultaneous implant placement.
Prediction of dental implant torque with a fast and automatic finite element analysis: a pilot study
Resumo:
Despite its importance, implant removal torque can be assessed at present only after implantation. This paper presents a new technique to help clinicians preoperatively evaluate implant stability.
Resumo:
OBJECTIVES: To monitor resonance frequency analysis (RFA) in relation to the jawbone characteristics and during the early phases of healing and incorporation of Straumann dental implants with an SLA surface. MATERIAL AND METHODS: 17 Straumann 4.1 mm implants (10 mm) and 7 Straumann 4.8 mm implants (10 mm) were installed and ISQ determined at baseline and after 1, 2, 3, 4, 5, 6, 8 and 12 weeks. Central bone cores were analyzed from the 4.1 mm implants using micro CT for bone volume density (BVD) and bone trabecular connectivity (BTC). RESULTS: Pocket probing depths ranged from 2-4 mm and bleeding on probing from 5-20%. At baseline, BVD varied between 24% and 65% and BTC between 4.9 and 25.4 for the 4.1 mm implants. Baseline ISQ varied between 55 and 74 with a mean of 61.4. No significant correlations were found between BVD or BTC and ISQ Values. For the 4.8 mm diameter implants baseline ISQ values ranged from 57-70 with a mean of 63.3. Over the healing period ISQ values increased at 1 week and decreased after 2-3 weeks. After 4 weeks ISQ values, again increased slightly, no significant differences were noted over time. One implant (4.1 mm) lost stability at 3 weeks. Its ISQ value had dropped from 68 to 45. However the latter value was determined after the clinical diagnosis of instability. CONCLUSION: ISQ values of 57-70 represented homeostasis and implant stability. However no predictive value for loosing implant stability can be attributed to RFA since the decrease occurred after the fact.
Resumo:
Purpose: The aim of this paper was to review the clinical literature on the Resonance frequency analysis (RFA) and Periotest techniques in order to assess the validity and prognostic value of each technique to detect implants at risk for failure. Material and methods: A search was made using the PubMed database to find clinical studies using the RFA and/or Periotest techniques. Results: A limited number of clinical reports were found. No randomized-controlled clinical trials or prospective cohort studies could be found for validity testing of the techniques. Consequently, only a narrative review was prepared to cover general aspects of the techniques, factors influencing measurements and the clinical relevance of the techniques. Conclusions: Factors such as bone density, upper or lower jaw, abutment length and supracrestal implant length seem to influence both RFA and Periotest measurements. Data suggest that high RFA and low Periotest values indicate successfully integrated implants and that low/decreasing RFA and high/increasing Periotest values may be signs of ongoing disintegration and/or marginal bone loss. However, single readings using any of the techniques are of limited clinical value. The prognostic value of the RFA and Periotest techniques in predicting loss of implant stability has yet to be established in prospective clinical studies. To cite this article: Aparicio C, Lang N P, Rangert B. Validity and clinical significance of biomechanical testing of implant/bone interface. Clin. Oral Imp. Res., 17 (Suppl. 2), 2006; 2-7.
Resumo:
AIM: To investigate the significance of the initial stability of dental implants for the establishment of osseointegration in an experimental capsule model for bone augmentation. MATERIAL AND METHODS: Sixteen male rats were used in the study. In each rat, muscle-periosteal flaps were elevated on the lateral aspect of the mandibular ramus on both sides, resulting in exposure of the bone surface. Small perforations were then produced in the ramus. A rigid, hemispherical Teflon capsule with a diameter of 6 mm and a height of 4 mm and with a hole in its middle portion, prepared to fit the circumference of an ITI HC titanium implant of 2.8 mm in diameter, was fixed to the ramus using 4 mini-screws. On one side of the jaw, the implant was placed through the hole in such a way that its apex did not make contact with the mandibular ramus (test). This placement of the implant did not ensure primary stability. On the other side of the jaw, a similar implant was placed through the hole of the capsule in such a way that contact was made between the implant and the surface of the ramus (control). This provided primary stability of the implant. After placement of the implants, the soft tissues were repositioned over the capsules and sutured. After 1, 3, 6 and 9 months, four animals were sacrificed and subjected to histometric analysis. RESULTS: The mean height of direct bone-to-implant contact of implants with primary stability was 38.8%, 52.9%, 64.6% and 81.3% of the implant length at 1, 3, 6 and 9 months, respectively. Of the bone adjacent to the implant surface, 28.1%, 28.9%, 52.6% and 69.6%, respectively, consisted of mineralized bone. At the test implants, no bone-to-implant contact was observed at any observation time or in any of these non-stabilized specimens. CONCLUSION: The findings of the present study indicate that primary implant stability is a prerequisite for successful osseointegration, and that implant instability results in fibrous encapsulation, thus confirming previously made clinical observations.
Resumo:
OBJECTIVES: To compare the clinical outcomes of standard, cylindrical, screw-shaped to novel tapered, transmucosal (Straumann Dental implants immediately placed into extraction sockets. Material and methods: In this randomized-controlled clinical trial, outcomes were evaluated over a 3-year observation period. This report deals with the need for bone augmentation, healing events, implant stability and patient-centred outcomes up to 3 months only. Nine centres contributed a total of 208 immediate implant placements. All surgical and post-surgical procedures and the evaluation parameters were discussed with representatives of all centres during a calibration meeting. Following careful luxation of the designated tooth, allocation of the devices was randomly performed by a central study registrar. The allocated SLA titanium implant was installed at the bottom or in the palatal wall of the extraction socket until primary stability was reached. If the extraction socket was >or=1 mm larger than the implant, guided bone regeneration was performed simultaneously (Bio Oss and BioGide. The flaps were then sutured. During non-submerged transmucosal healing, everything was done to prevent infection. At surgery, the need for augmentation and the degree of wound closure was verified. Implant stability was assessed clinically and by means of resonance frequency analysis (RFA) at surgery and after 3 months. Wound healing was evaluated after 1, 2, 6 and 12 weeks post-operatively. RESULTS: The demographic data did not show any differences between the patients receiving either standard cylindrical or tapered implants. All implants yielded uneventful healing with 15% wound dehiscences after 1 week. After 2 weeks, 93%, after 6 weeks 96%, and after 12 weeks 100% of the flaps were closed. Ninety percent of both implant designs required bone augmentation. Immediately after implantation, RFA values were 55.8 and 56.7 and at 3 months 59.4 and 61.1 for cylindrical and tapered implants, respectively. Patient-centred outcomes did not differ between the two implant designs. However, a clear preference of the surgeon's perception for the appropriateness of the novel-tapered implant was evident. CONCLUSIONS: This RCT has demonstrated that tapered or standard cylindrical implants yielded clinically equivalent short-term outcomes after immediate implant placement into the extraction socket.
Resumo:
OBJECTIVE: Resonance frequency analysis (RFA) is a method of measuring implant stability. However, little is known about RFA of implants with long loading periods. The objective of the present study was to determine standard implant stability quotients (ISQs) for clinical successfully osseointegrated 1-stage implants in the edentulous mandible. MATERIALS AND METHODS: Stability measurements by means of RFA were performed in regularly followed patients who had received 1- stage implants for overdenture support. The time interval between implant placement and measurement ranged from 1 year up to 10 years. The short-term group comprised patients who were followed up to 5 years, while the long-term group included patients with an observation time of > 5 years up to 10 years. For further comparison RFA measurements were performed in a matching group with unloaded implants at the end of the surgical procedure. For statistical analysis various parameters that might influence the ISQs of loaded implants were included, and a mixed-effects model applied (regression analysis, P <.0125). RESULTS: Ninety-four patients were available with a total of 205 loaded implants, and 16 patients with 36 implants immediately after the surgical procedure. The mean ISQ of all measured implants was 64.5 +/- 7.9 (range, 58 to 72). Statistical analysis did not reveal significant differences in the mean ISQ related to the observation time. The parameters with overall statistical significance were the diameter of the implants and changes in the attachment level. In the short-term group, the gender and the clinically measured attachment level had a significant effect. Implant diameter had a significant effect in the long-term group. CONCLUSIONS: A mean ISQ of 64.5 +/- 7.9 was found to be representative for stable asymptomatic interforaminal implants measured by the RFA instrument at any given time point. No significant differences in ISQ values were found between implants with different postsurgical time intervals. Implant diameter appears to influence the ISQ of interforaminal implants.
Resumo:
PURPOSE: To assess the literature on accuracy and clinical performance of computer technology applications in surgical implant dentistry. MATERIALS AND METHODS: Electronic and manual literature searches were conducted to collect information about (1) the accuracy and (2) clinical performance of computer-assisted implant systems. Meta-regression analysis was performed for summarizing the accuracy studies. Failure/complication rates were analyzed using random-effects Poisson regression models to obtain summary estimates of 12-month proportions. RESULTS: Twenty-nine different image guidance systems were included. From 2,827 articles, 13 clinical and 19 accuracy studies were included in this systematic review. The meta-analysis of the accuracy (19 clinical and preclinical studies) revealed a total mean error of 0.74 mm (maximum of 4.5 mm) at the entry point in the bone and 0.85 mm at the apex (maximum of 7.1 mm). For the 5 included clinical studies (total of 506 implants) using computer-assisted implant dentistry, the mean failure rate was 3.36% (0% to 8.45%) after an observation period of at least 12 months. In 4.6% of the treated cases, intraoperative complications were reported; these included limited interocclusal distances to perform guided implant placement, limited primary implant stability, or need for additional grafting procedures. CONCLUSION: Differing levels and quantity of evidence were available for computer-assisted implant placement, revealing high implant survival rates after only 12 months of observation in different indications and a reasonable level of accuracy. However, future long-term clinical data are necessary to identify clinical indications and to justify additional radiation doses, effort, and costs associated with computer-assisted implant surgery.
Resumo:
PURPOSE: To evaluate early and immediate loading of implants in the posterior maxilla and to investigate whether there is a difference in success rates, survival rates, and peri-implant parameters, including marginal bone level changes. MATERIALS AND METHODS: A comprehensive systematic review of the literature was conducted. The selection of publications reporting on human clinical studies was based on predetermined inclusion criteria and was agreed upon by two reviewers. RESULTS: Twelve papers were identified on early loading (two randomized controlled clinical trials [RCTs] and 10 prospective case series studies). Six papers were found on immediate loading (one RCT, four prospective case series, and one retrospective study). CONCLUSIONS: Under certain circumstances it is possible to successfully load dental implants in the posterior maxilla early or immediately after their placement in selected patients. The success rate appears to be technique sensitive, although no study has directly assessed this. A high degree of primary implant stability (high value of insertion torque) and implant surface characteristics play an important role. It is not possible to draw evidence-based conclusions concerning contraindications, threshold values for implant stability, bone quality and quantity needed, or impact of occlusal loading forces. As for the impact of the surgical technique on implant outcome in different bone densities, no studies prove significant superior results with one technique over another. Well-designed RCTs with a large number of patients are necessary to make early/immediate loading protocols in posterior maxilla evidence based, but ethical and practical considerations may limit the real possibility of such studies in the near future.