8 resultados para IMPERFECTIONS
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
Background Serologic testing algorithms for recent HIV seroconversion (STARHS) provide important information for HIV surveillance. We have previously demonstrated that a patient's antibody reaction pattern in a confirmatory line immunoassay (INNO-LIA™ HIV I/II Score) provides information on the duration of infection, which is unaffected by clinical, immunological and viral variables. In this report we have set out to determine the diagnostic performance of Inno-Lia algorithms for identifying incident infections in patients with known duration of infection and evaluated the algorithms in annual cohorts of HIV notifications. Methods Diagnostic sensitivity was determined in 527 treatment-naive patients infected for up to 12 months. Specificity was determined in 740 patients infected for longer than 12 months. Plasma was tested by Inno-Lia and classified as either incident (< = 12 m) or older infection by 26 different algorithms. Incident infection rates (IIR) were calculated based on diagnostic sensitivity and specificity of each algorithm and the rule that the total of incident results is the sum of true-incident and false-incident results, which can be calculated by means of the pre-determined sensitivity and specificity. Results The 10 best algorithms had a mean raw sensitivity of 59.4% and a mean specificity of 95.1%. Adjustment for overrepresentation of patients in the first quarter year of infection further reduced the sensitivity. In the preferred model, the mean adjusted sensitivity was 37.4%. Application of the 10 best algorithms to four annual cohorts of HIV-1 notifications totalling 2'595 patients yielded a mean IIR of 0.35 in 2005/6 (baseline) and of 0.45, 0.42 and 0.35 in 2008, 2009 and 2010, respectively. The increase between baseline and 2008 and the ensuing decreases were highly significant. Other adjustment models yielded different absolute IIR, although the relative changes between the cohorts were identical for all models. Conclusions The method can be used for comparing IIR in annual cohorts of HIV notifications. The use of several different algorithms in combination, each with its own sensitivity and specificity to detect incident infection, is advisable as this reduces the impact of individual imperfections stemming primarily from relatively low sensitivities and sampling bias.
Resumo:
Der Beitrag gibt einen Überblick über den Stand der Forschung zur staatlichen Gründungsfinanzierung, speziell in Deutschland. Dabei steht die Frage im Vordergrund, ob eine öffentliche Gründungsfinanzierung aus wirtschaftspolitischer Sicht zu rechtfertigen ist. Konkret werden vier Forschungsfragen untersucht. Die erste Frage lautet, ob Unternehmensgründungen für eine Wirtschaft überhaupt Nutzen stiften. Die zweite Frage lautet, ob auf dem Markt der Finanzierung von Gründungsunternehmen Unvollkommenheiten bzw. Marktversagen feststellbar sind. Die dritte Frage lautet, ob staatliche Maßnahmen der Gründungsfinanzierung einzelwirtschaftlich effektiv sind, dass sich also geförderte Unternehmen als erfolgreicher erweisen als nicht geförderte. Die vierte Frage lautet, ob eine staatliche Gründungsfinanzierung die angestrebten wirtschaftspolitischen Ziele zu den niedrigstmöglichen Kosten erreicht, also effizient ist. Die Antworten sind durchweg negativ und zeigen, dass die bisherige Forschung keine ausreichende Rechtfertigung für eine staatliche Gründungsfinanzierung bieten kann.
Resumo:
The contemporary intellectual property rights (IPR) system is not a simple, smoothly working block of rules but is complex and full of ambiguities, and as many argue, imperfections. Some deficits relate on the one hand to the inherent centrality of authorship, originality and mercantilism to the ‘Western’ IP model, which leaves numerous non-Western, collaborative or folkloric modes of production outside the scope of protection. On the other hand, some imperfections stem from the way IPR are granted, whereby creators acquire a temporary monopoly over their works and thus exclude the public from having access to them. In this sense, it is often uncertain whether the existent IPR model appropriately reflects the precarious balance between private and public interests, and whether the best incentives to promote creativity and innovation - the initially stated objectives of intellectual property protection - are offered. The matter becomes still more complicated when one considers that the IPR system is not domestically contained but is globalised and strongly affected by rules at the regional and international levels. The question of whether the balance between private interests and public values is sustained within the international legal framework, epitomised by the Agreement on Trade-Related Aspects of Intellectual Property Rights (TRIPS) of the World Trade Organization (WTO), is precisely the topic of the book reviewed here. Review of Intellectual Property, Public Policy, and International Trade, edited by Inge Govaere and Hanns Ullrich, P.I.E. Peter Lang, 2007.
Resumo:
(31)P MRS magnetization transfer ((31)P-MT) experiments allow the estimation of exchange rates of biochemical reactions, such as the creatine kinase equilibrium and adenosine triphosphate (ATP) synthesis. Although various (31)P-MT methods have been successfully used on isolated organs or animals, their application on humans in clinical scanners poses specific challenges. This study compared two major (31)P-MT methods on a clinical MR system using heteronuclear surface coils. Although saturation transfer (ST) is the most commonly used (31)P-MT method, sequences such as inversion transfer (IT) with short pulses might be better suited for the specific hardware and software limitations of a clinical scanner. In addition, small NMR-undetectable metabolite pools can transfer MT to NMR-visible pools during long saturation pulses, which is prevented with short pulses. (31)P-MT sequences were adapted for limited pulse length, for heteronuclear transmit-receive surface coils with inhomogeneous B1 , for the need for volume selection and for the inherently low signal-to-noise ratio (SNR) on a clinical 3-T MR system. The ST and IT sequences were applied to skeletal muscle and liver in 10 healthy volunteers. Monte-Carlo simulations were used to evaluate the behavior of the IT measurements with increasing imperfections. In skeletal muscle of the thigh, ATP synthesis resulted in forward reaction constants (k) of 0.074 ± 0.022 s(-1) (ST) and 0.137 ± 0.042 s(-1) (IT), whereas the creatine kinase reaction yielded 0.459 ± 0.089 s(-1) (IT). In the liver, ATP synthesis resulted in k = 0.267 ± 0.106 s(-1) (ST), whereas the IT experiment yielded no consistent results. ST results were close to literature values; however, the IT results were either much larger than the corresponding ST values and/or were widely scattered. To summarize, ST and IT experiments can both be implemented on a clinical body scanner with heteronuclear transmit-receive surface coils; however, ST results are much more robust against experimental imperfections than the current implementation of IT.
Resumo:
Efforts are ongoing to decrease the noise of the GRACE gravity field models and hence to arrive closer to the GRACE baseline. The most significant error sources belong the untreated errors in the observation data and the imperfections in the background models. The recent study (Bandikova&Flury,2014) revealed that the current release of the star camera attitude data (SCA1B RL02) contain noise systematically higher than expected by about a factor 3-4. This is due to an incorrect implementation of the algorithms for quaternion combination in the JPL processing routines. Generating improved SCA data requires that valid data from both star camera heads are available which is not always the case because the Sun and Moon at times blind one camera. In the gravity field modeling, the attitude data are needed for the KBR antenna offset correction and to orient the non-gravitational linear accelerations sensed by the accelerometer. Hence any improvement in the SCA data is expected to be reflected in the gravity field models. In order to quantify the effect on the gravity field, we processed one month of observation data using two different approaches: the celestial mechanics approach (AIUB) and the variational equations approach (ITSG). We show that the noise in the KBR observations and the linear accelerations has effectively decreased. However, the effect on the gravity field on a global scale is hardly evident. We conclude that, at the current level of accuracy, the errors seen in the temporal gravity fields are dominated by errors coming from sources other than the attitude data.
Resumo:
We show how a test of macroscopic realism based on Leggett-Garg inequalities (LGIs) can be performed in a macroscopic system. Using a continuous-variable approach, we consider quantum nondemolition (QND) measurements applied to atomic ensembles undergoing magnetically driven coherent oscillation. We identify measurement schemes requiring only Gaussian states as inputs and giving a significant LGI violation with realistic experimental parameters and imperfections. The predicted violation is shown to be due to true quantum effects rather than to a classical invasivity of the measurement. Using QND measurements to tighten the “clumsiness loophole” forces the stubborn macrorealist to recreate quantum backaction in his or her account of measurement.
Resumo:
The present understanding of the initiation of boudinage and folding structures is based on viscosity contrasts and stress exponents, considering an intrinsically unstable state of the layer. The criterion of localization is believed to be prescribed by geometry-material interactions, which are often encountered in natural structures. An alternative localization phenomenon has been established for ductile materials, in which instability emerges for critical material parameters and loading rates from homogeneous conditions. In this thesis, conditions are sought under which this type of instability prevails and whether localization in geological materials necessarily requires a trigger by geometric imperfections. The relevance of critical deformation conditions, material parameters and the spatial configuration of instabilities are discussed in a geological context. In order to analyze boudinage geometries, a numerical eigenmode analysis is introduced. This method allows determining natural frequencies and wavelengths of a structure and inducing perturbations on these frequencies. In the subsequent coupled thermo-mechanical simulations, using a grain size evolution and end-member flow laws, localization emerges when material softening through grain size sensitive viscous creep sets in. Pinch-and-swell structures evolve along slip lines through a positive feedback between the matrix response and material bifurcations inside the layer, independent from the mesh-discretization length scale. Since boudinage and folding are considered to express the same general instability, both structures should arise independently of the sign of the loading conditions and for identical material parameters. To this end, the link between material to energy instabilities is approached by means of bifurcation analyses of the field equations and finite element simulations of the coupled system of equations. Boudinage and folding structures develop at the same critical energy threshold, where dissipative work by temperature-sensitive creep overcomes the diffusive capacity of the layer. This finding provides basis for a unified theory for strain localization in layered ductile materials. The numerical simulations are compared to natural pinch-and-swell microstructures, tracing the adaption of grain sizes, textures and creep mechanisms in calcite veins. The switch from dislocation to diffusion creep relates to strain-rate weakening, which is induced by dissipated heat from grain size reduction, and marks the onset of continuous necking. The time-dependent sequence uncovers multiple steady states at different time intervals. Microstructurally and mechanically stable conditions are finally expressed in the pinch-and-swell end members. The major outcome of this study is that boudinage and folding can be described as the same coupled energy-mechanical bifurcation, or as one critical energy attractor. This finding allows the derivation of critical deformation conditions and fundamental material parameters directly from localized structures in the field.