40 resultados para IFN-gamma level
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
BACKGROUND: The most prevalent drug hypersensitivity reactions are T-cell mediated. The only established in vitro test for detecting T-cell sensitization to drugs is the lymphocyte transformation test, which is of limited practicability. To find an alternative in vitro method to detect drug-sensitized T cells, we screened the in vitro secretion of 17 cytokines/chemokines by peripheral blood mononuclear cells (PBMC) of patients with well-documented drug allergies, in order to identify the most promising cytokines/chemokines for detection of T-cell sensitization to drugs. METHODS: Peripheral blood mononuclear cell of 10 patients, five allergic to beta-lactams and five to sulfanilamides, and of five healthy controls were incubated for 3 days with the drug antigen. Cytokine concentrations were measured in the supernatants using commercially available 17-plex bead-based immunoassay kits. RESULTS: Among the 17 cytokines/chemokines analysed, interleukin-2 (IL-2), IL-5, IL-13 and interferon-gamma (IFN-gamma) secretion in response to the drugs were significantly increased in patients when compared with healthy controls. No difference in cytokine secretion patterns between sulfonamide- and beta-lactam-reactive PBMC could be observed. The secretion of other cytokines/chemokines showed a high variability among patients. CONCLUSION: The measurement of IL-2, IL-5, IL-13 or IFN-gamma or a combination thereof might be a useful in vitro tool for detection of T-cell sensitization to drugs. Secretion of these cytokines seems independent of the type of drug antigen and the phenotype of the drug reaction. A study including a higher number of patients and controls will be needed to determine the exact sensitivity and specificity of this test.
Resumo:
Recently we demonstrated that human mast cells (MC) express functional TRAIL death receptors. Here we assessed the expression of TRAIL on both mRNA and protein level in cord blood derived MC (CBMC) and HMC-1. The TRAIL release either spontaneous or induced by LPS, IFN-gamma and IgE-dependent activation, was evaluated as well. The protein location was restricted to the intracellular compartment in CBMC, but not in HMC-1. The intracellular TRAIL was not localized inside the granules. The treatment with IFN-gamma and LPS up-regulated intracellular TRAIL expression in CBMC, but did not induce its release. These in vitro data show that human MC can produce and express intracellular TRAIL whose location could not be altered by different stimuli.
Resumo:
Intraperitoneal larval infection (alveolar echinococcosis, AE) with Echinococcus multilocularis in mice impairs host immunity. Metacestode metabolites may modulate immunity putatively via dendritic cells. During murine AE, a relative increase of peritoneal DCs (pe-DCs) in infected mice (AE-pe-DCs; 4% of total peritoneal cells) as compared to control mice (naive pe-DCs; 2%) became apparent in our study. The differentiation of AE-pe-DCs into TGF-beta-expressing cells and the higher level of IL-4 than IFN-gamma/IL-2 mRNA expression in AE-CD4+pe-T cells indicated a Th2 orientation. Analysis of major accessory molecule expression on pe-DCs from AE-infected mice revealed that CD80 and CD86 were down-regulated on AE-pe-DCs, while ICAM-1(CD54) remained practically unchanged. Moreover, AE-pe-DCs had a weaker surface expression of MHC class II (Ia) molecules as compared to naive pe-DCs. The gene expression level of molecules involved in MHC class II (Ia) synthesis and formation of MHC class II (Ia)-peptide complexes were down-regulated. In addition, metacestodes excreted/secreted (E/S) or vesicle-fluid (V/F) antigens were found to alter MHC class II molecule expression on the surface of BMDCs. Finally, conversely to naive pe-DCs, an increasing number of AE-pe-DCs down-regulated Con A-induced proliferation of naive CD4+pe-T cells. These findings altogether suggested that TGF-beta-expressing immature AE-pe-DCs might play a significant role in the generation of a regulatory immune response within the peritoneal cavity of AE-infected mice.
Resumo:
Keratinocyte apoptosis mediated by Fas/Fas ligand molecular interactions and subsequent caspase activation is believed to play an important role in the pathogenesis of atopic dermatitis (AD), in particular for the formation of spongiosis. To estimate epidermal caspase activation in normal and AD skin under in vivo conditions, we analysed caspase-3 cleavage by immunohistology. In normal skin as well as non-lesional AD skin, we detected caspase-3 cleavage in single cells of the basal layer. In contrast, in acute lesional AD skin, we not only obtained evidence for increased expression of cleaved caspase-3 in keratinocytes of the basal layer but also observed caspase-3 cleavage in one or more layers of the spinous cell layer, in particular in spongiotic areas. Short-term topical treatment of the skin lesions with tacrolimus or pimecrolimus abolished the expression of cleaved caspase-3 in the spinous layer. Moreover, epidermal caspase-3 cleavage correlated with the numbers of dermal interferon-gamma (IFN-gamma)-expressing CD4+ and CD8+ lymphocytes in skin lesions of AD patients, supporting the view that IFN-gamma is important for the activation of proapoptotic pathways in keratinocytes. This is also confirmed by the observation of increased Fas expression on keratinocytes in acute AD lesions that was markedly reduced following topical calcineurin inhibitor treatment. These data suggest that caspase-3 cleavage in the spinous layer of the epidermis is a pathologic event contributing to spongiosis formation in AD, whereas cleavage of caspase-3 in basal cells might represent a physiologic mechanism within the process of epidermal renewal.
Resumo:
BACKGROUND: Equine insect bite hypersensitivity (IBH) is an immediate-type hypersensitivity reaction provoked by insect-derived allergens. Icelandic horses living in Iceland do not have IBH due to absence of relevant insects, but acquire it at high frequency after being imported to mainland Europe. In contrast, their offspring born in mainland Europe has reduced IBH incidence. T helper 1 (Th1) and Th2 cells and cytokines were determined in Icelandic horses born in Iceland and on the continent and which either have IBH or are healthy. METHODS: Peripheral blood mononuclear cells (PBMC) from these horses were stimulated for 18 h during summer and winter with polyclonal T cell stimuli, IBH allergen(s) or irrelevant allergen(s). Cells were analysed by flow cytometry for interferon-gamma (IFN-gamma) and interleukin-4 (IL-4); RNA was analysed for IFN-gamma, IL-4, IL-5 and IL-13 mRNA. RESULTS: During summer, but not during winter, IBH PBMC stimulated polyclonally showed reduced IFN-gamma mRNA and IFN-gamma-producing cells when compared with those of healthy horses, regardless of origin. PBMC stimulated polyclonally or with IBH allergen showed increased IL-4 mRNA levels and higher numbers of IL-4-producing cells when born in Iceland or showing IBH symptoms. IL-5 and IL-13 mRNA were modulated neither by disease nor by origin. Abrogation of IL-4 production in healthy horses born in mainland Europe may be due, at least in part, to IL-10. There was an increased level of IL-10 in supernatants from PBMC of healthy horses born in mainland Europe and stimulated polyclonally or with IBH allergen. CONCLUSIONS: Modulation of IBH incidence is governed by altered Th1/Th2 ratio, which might be influenced by IL-10.
Resumo:
Induction of interferon-beta (IFN-beta) gene expression is a tightly regulated process, and a plethora of studies identified the signal transduction pathway TANK-binding kinase-1 (TBK-1)/IFN regulatory factor-3 (IRF-3) as essential to the induction of IFN-beta gene expression. Data regarding the role of p38 and JNK are rare, however. We investigated the contribution of these kinases to IFN-beta expression in human macrophages treated with poly(I:C), lipopolysaccharide (LPS), Sendai virus, or vesicular stomatitis virus (VSV). We found that all the stimuli induced IFN-beta mRNA, albeit to a different extent. Whereas LPS and VSV induced the phosphorylation of p38 and JNK, neither poly(I:C) nor Sendai virus led to the detection of phosphospecific signals. When inhibiting p38, a VSV-triggered IFN-beta mRNA response was inhibited, whereas inhibiting JNK suppressed an LPS-triggered response, but only when macrophages were primed with IFN-gamma. Neither poly(I:C)-induced nor Sendai virus-induced IFN-beta mRNA expression was affected when p38 and JNK were inhibited. Collectively, the data show that the contribution of p38 and JNK to the expression of IFN-beta occurs in a stimulation-specific manner in human macrophages.
Resumo:
In this study we examined the potential inhibition by interferon-gamma (IFN gamma) of the early stages of low density lipoprotein (LDL) oxidation mediated by human peripheral blood mononuclear cells (PBMC) and monocyte-derived macrophages (MDM) in Ham's F-10 medium supplemented with physiological amounts of L-tryptophan (Trp). We assessed LDL oxidation by measuring the consumption of LDL's major antioxidant (i.e., alpha-tocopherol) and targets for oxidation (cholesteryllinoleate and cholesterylarachidonate), together with the accumulation of cholesterylester hydroperoxides and the increase in relative electrophoretic mobility of the lipoprotein particle. Exposure of PBMC or MDM to IFN gamma induced the degradation of extracellular Trp with concomitant accumulation of kynurenine, anthranilic and 3-hydroxyanthranilic acid (3HAA) in the culture medium. Formation of 3HAA, but neither Trp degradation nor formation of kynurenine and anthranilic acid, was inhibited by low amounts of diphenylene iodonium (DPI) in a concentration-dependent manner. In contrast to oxidative Trp metabolism, exposure of human PBMC or MDM to IFN gamma failed to induce degradation of arginine, and nitrite was not detected in the cell supernatant, indicating that nitric oxide synthase was not induced under these conditions. Incubation of LDL in Trp-supplemented F-10 medium resulted in a time-dependent oxidation of the lipoprotein that was accelerated in the presence of PBMC or MDM but inhibited strongly in the presence of both cells and IFN gamma, i.e., when Trp degradation and formation of 3HAA were induced. In contrast, when IFN gamma was added to PBMC or MDM in F-10 medium that was virtually devoid of Trp, inhibition of cell-accelerated LDL oxidation was not observed. Exogenous 3HAA added to PBMC or purified monocytes in the absence of IFN gamma also strongly and in a concentration-dependent manner inhibited LDL oxidation. Selective inhibition of IFN gamma-induced formation of 3HAA by DPI caused reversion of the inhibitory action of this cytokine on both PBMC- and MDM-mediated LDL oxidation. These results show that IFN gamma treatment of human PBMC or MDM in vitro attenuates the extent of LDL oxidation caused by these cells, and indicate that Trp degradation with formation of 3HAA is a major contributing factor to this inhibitory activity.
Resumo:
RATIONALE: Pulmonary complications of hematopoietic stem cell transplantation include infections and graft-versus-host diseases, such as idiopathic pneumonia syndrome (IPS). Conflicting data exist regarding the role of the interferon (IFN)-gamma-producing Th1 CD4(+) T-cell subset and IL-17A in IPS. OBJECTIVES: To determine the role of IFN-gamma and IL-17A in the establishment of pulmonary graft-versus-host disease. METHODS: A semiallogeneic murine model based on C57BL/6 x BALB/c as recipients with transplantation of BALB/c RAG2(-/-) bone marrow and transfer of different genetic knockout T cells (T-bet(-/-), IFN-gamma(-/-), IFN-gammaR(-/-)) on a BALB/c background. Lung tissue was examined for parenchymal changes and infiltrating cells by histology and fluorescence-activated cell sorter analysis. MEASUREMENTS AND MAIN RESULTS: After transfer of semiallogeneic bone marrow together with donor CD4(+) T cells lacking IFN-gamma or T-bet-a T-box transcription factor controlling Th1 commitment-we found severe inflammation in the lungs, but no enhancement in other organs. In contrast, wild-type donor CD4(+) T cells mediated minimal inflammation only, and donor CD8(+) T cells were not required for IPS development. Mechanistically, the absence of IFN-gamma or IFN-gamma signaling in pulmonary parenchymal cells promoted expansion of IL-17A-producing CD4(+) T cells and local IL-17A release. In vivo depletion of IL-17A reduced disease severity. CONCLUSIONS: One mechanism of IFN-gamma protection against IPS is negative regulation of the expansion of pathogenic IL-17A-producing CD4(+) T cells through interaction with the IFN-gamma receptor on the pulmonary parenchymal cell population.
Resumo:
BACKGROUND AND AIMS: Excessive uptake of commensal bacterial antigens through a permeable intestinal barrier may influence host responses to specific antigen in a genetically predisposed host. The aim of this study was to investigate whether intestinal barrier dysfunction induced by indomethacin treatment affects the host response to intestinal microbiota in gluten-sensitized HLA-DQ8/HCD4 mice. METHODOLOGY/PRINCIPAL FINDINGS: HLA-DQ8/HCD4 mice were sensitized with gluten, and gavaged with indomethacin plus gluten. Intestinal permeability was assessed by Ussing chamber; epithelial cell (EC) ultra-structure by electron microscopy; RNA expression of genes coding for junctional proteins by Q-real-time PCR; immune response by in-vitro antigen-specific T-cell proliferation and cytokine analysis by cytometric bead array; intestinal microbiota by fluorescence in situ hybridization and analysis of systemic antibodies against intestinal microbiota by surface staining of live bacteria with serum followed by FACS analysis. Indomethacin led to a more pronounced increase in intestinal permeability in gluten-sensitized mice. These changes were accompanied by severe EC damage, decreased E-cadherin RNA level, elevated IFN-gamma in splenocyte culture supernatant, and production of significant IgM antibody against intestinal microbiota. CONCLUSION: Indomethacin potentiates barrier dysfunction and EC injury induced by gluten, affects systemic IFN-gamma production and the host response to intestinal microbiota antigens in HLA-DQ8/HCD4 mice. The results suggest that environmental factors that alter the intestinal barrier may predispose individuals to an increased susceptibility to gluten through a bystander immune activation to intestinal microbiota.
Resumo:
Organotypic slice culture explants of rat cortical tissue infected with Toxoplasma gondii tachyzoites were applied as an in vitro model to investigate host-pathogen interactions in cerebral toxoplasmosis. The kinetics of parasite proliferation and the effects of interferon-gamma (IFN-gamma) and tumor necrosis factor-alpha (TNF-alpha) in infected organotypic cultures were monitored by light microscopy, transmission electron microscopy (TEM), and quantitative polymerase chain reaction (PCR) assay. As assessed by the loss of the structural integrity of the glial fibrillary acidic protein-intermediate filament network, tachyzoites infected and proliferated mainly within astrocytes, whereas neurons and microglia remained largely unaffected. Toxoplasma gondii proliferation was severely inhibited by IFN-y. However, this inhibition was not linked to tachyzoite-to-bradyzoite stage conversion. In contrast, TNF-alpha treatment resulted in a dramatically enhanced proliferation rate of the parasite. The cellular integrity in IFN-gamma-treated organotypic slice cultures was severely impaired compared with untreated and TNF-alpha-treated cultures. Thus, on infection of organotypic neuronal cultures, IFN-gamma and TNF-alpha exhibit largely detrimental effects, which could contribute to either inhibition or acceleration of parasite proliferation during cerebral toxoplasmosis.
Resumo:
Synthetic agonists of TLR9 containing novel DNA structures and R'pG (wherein R=1-(2'-deoxy-beta-d-ribofuranosyl)-2-oxo-7-deaza-8-methyl-purine) motifs, referred to as immune modulatory oligonucleotides (IMOs), have been shown to stimulate T(H)-1-type-immune responses and potently reverse allergen-induced T(H)-2 responses to T(H)-1 responses in vitro and in vivo in mice. In order to investigate the immunomodulatory potential of IMOs in dogs, canine peripheral blood mononuclear cells (PBMC) from healthy dogs were stimulated with three different IMOs and a control IMO, alone or in combination with concanavalin A (ConA). Lipopolysaccharide (LPS) was used as a positive control for B lymphocyte activation. Carboxyfluorescein diacetate succinimidyl ester and phenotype staining was used to tag proliferating T and B lymphocytes (CD5(+) and CD21(+)) by flow cytometry. Real-time PCR and ELISA were processed to assay cytokine production of IFN-gamma, IL-10, TGF-beta, IL-6 and IL-10. Like LPS, IMOs alone induced neither proliferation of CD5(+) T cells nor CD21(+) B cells, but both LPS and IMO had the capacity to co-stimulate ConA and induced proliferation of B cells. In combination with ConA, one of the IMOs (IMO1) also induced proliferation of T cells. IMO1 also significantly enhanced the expression of IFN-gamma on the mRNA and protein level in canine PBMC, whereas expression of IL-10, TGF-beta and IL-4 mRNAs was not induced by any of the IMOs. These results indicate that in canine PBMC from healthy dogs, IMO1 was able to induce a T(H)-1 immune response including T- and B-cell proliferation.
Resumo:
Interleukin 4 (IL-4) is expected to play a dominant role in the development of T helper (Th) 2 cells. Th2 immune responses with expression of relatively large amounts of interleukin 4 (IL-4) but little interferon gamma (IFN-gamma) are characteristic for chronic helminth infections. But no information is available about IL4 expression during early Fasciola hepatica (F. hepatica) infections in cattle. Therefore, we investigated F. hepatica specific IL-4 and IFN-gamma mRNA expression in peripheral blood mononuclear cells (PBMCs) from calves experimentally infected with F. hepatica. Cells were collected prior to infection and on post-inoculation days (PIDs) 10, 28 and 70. Interestingly, PBMCs responded to stimulation with F. hepatica secretory-excretory products (FhSEP) already on PID 10 and expressed high amounts of IL-4 but not of IFN-gamma mRNA suggesting that F. hepatica induced a Th2 biased early immune response which was not restricted to the site of infection. Later in infection IL-4 mRNA expression decreased whereas IFN-gamma mRNA expression increased slightly. Isolated lymph node cells (LNCs) stimulated with FhSEP and, even more importantly, non-stimulated LN tissue samples indicated highly polarized Th2 type immune responses in the draining (hepatic) lymph node, but not in the retropharyngeal lymph node. During preliminary experiments, two splice variants of bovine IL-4 mRNA, boIL-4delta2 and boIL-4delta3, were detected. Since a human IL-4delta2 was assumed to act as competitive inhibitor of IL-4, it was important to know whether expression of these splice variants of bovine IL-4 have a regulatory function during an immune response to infection with F. hepatica. Indeed, IL-4 splice variants could be detected in a number of samples, but quantitative analysis did not yield any clue to their function. Therefore, the significance of bovine IL-4 splice variants remains to be determined.
Resumo:
The acceptance of the fetal allograft by pregnant women and mice seems to be associated with a shift from a Th 1 dominated to a Th 2 dominated immune response to certain infectious agents. The goal of this study was to examine cytokine expression in peripheral blood mononuclear cells (PBMCs) from cattle immune to bovine viral diarrhea virus (BVDV) to determine whether pregnancy also has an influence on the type of immune response in this species. Forty-six heifers and cows between 14 months and 13 years of age were included in this study. Twenty-four were seropositive and 22 seronegative for BVDV. Eleven of the seropositive animals and 11 of the seronegative animals were in the eighth month of gestation, the remaining animals were virgin heifers. PBMC from these animals were analyzed for Interferon (IFN)-gamma and Interleukin (IL)-4 mRNA expression by real-time RT-PCR after stimulation with a non-cytopathic strain of BVDV. Additionally, an ELISA was performed to measure IFN-gamma in the supernatants of stimulated cell cultures. In BVDV seropositive animals, IFN-gamma mRNA levels were significantly higher than in BVDV seronegative animals and there was a significant positive correlation between the changes in IFN-gamma and IL-4 mRNA expression. There was, however, no significant difference in IFN-gamma and IL-4 mRNA levels between pregnant and non-pregnant animals. These results are inconsistent with BVDV inducing a Th1 or Th2 biased immune response. Furthermore, a shift in the cytokine pattern during bovine pregnancy was not evident.
Resumo:
NK cells express toll-like receptors (TLR) that recognize conserved pathogen or damage associated molecular patterns and play a fundamental role in innate immunity. Low molecular weight dextran sulfate (DXS), known to inhibit the complement system, has recently been reported by us to inhibit TLR4-induced maturation of human monocyte-derived dendritic cells (MoDC). In this study, we investigated the capability of DXS to interfere with human NK cell activation triggered directly by TLR2 agonists or indirectly by supernatants of TLR4-activated MoDC. Both TLR2 agonists and supernatants of TLR4-activated MoDC activated NK cells phenotypically, as demonstrated by the analysis of NK cell activation markers (CD56, CD25, CD69, NKp30, NKp44, NKp46, DNAM-1 and NKG2D), and functionally as shown by increased NK cell degranulation (CD107a surface expression) and IFN-gamma secretion. DXS prevented the up-regulation of NK cell activation markers triggered by TLR2 ligands or supernatants of TLR4-activated MoDC and dose-dependently abrogated NK cell degranulation and IFN-gamma secretion. In summary our results suggest that DXS may be a useful reagent to inhibit the direct and indirect TLR-mediated activation of NK cells.
Resumo:
Intraperitoneal proliferation of the metacestode stage of Echinococcus multilocularis in experimentally infected mice is followed by an impaired host immune response favoring parasite survival. We here demonstrate that infection in chronically infected mice was associated with a 3-fold increase of the percentages of CD4+ and CD8+ peritoneal T (pT) cells compared to uninfected controls. pT cells of infected mice expressed high levels of IL-4 mRNA, while only low amounts of IFN-gamma mRNA were detected, suggesting that a Th2-biased immune response predominated the late stage of disease. Peritoneal dendritic cells from infected mice (AE-pDCs) expressed high levels of TGF-beta mRNA and very low levels of IL-10 and IL-12 (p40) mRNA, and the expression of surface markers for DC-maturation such as MHC class II (Ia) molecules, CD80, CD86 and CD40 was down-regulated. In contrast to pDCs from non-infected mice, AE-pDCs did not enhance Concanavalin A (ConA)-induced proliferation when added to CD4+ pT and CD8+ pT cells of infected and non-infected mice, respectively. In addition, in the presence of a constant number of pDCs from non-infected mice, the proliferation of CD4+ pT cells obtained from infected animals to stimulation with ConA was lower when compared to the responses of CD4+ pT cells obtained from non-infected mice. This indicated that regulatory T cells (Treg) may interfere in the complex immunological host response to infection. Indeed, a subpopulation of regulatory CD4+ CD25+ pT cells isolated from E. multilocularis-infected mice reduced ConA-driven proliferation of CD4+ pT cells. The high expression levels of Foxp3 mRNA by CD4+ and CD8+ pT cells suggested that subpopulations of regulatory CD4+ Foxp3+ and CD8+ Foxp3+ T cells were involved in modulating the immune responses within the peritoneal cavity of E. multilocularis-infected mice.