3 resultados para IED
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
Purpose To investigate whether nonhemodynamic resonant saturation effects can be detected in patients with focal epilepsy by using a phase-cycled stimulus-induced rotary saturation (PC-SIRS) approach with spin-lock (SL) preparation and whether they colocalize with the seizure onset zone and surface interictal epileptiform discharges (IED). Materials and Methods The study was approved by the local ethics committee, and all subjects gave written informed consent. Eight patients with focal epilepsy undergoing presurgical surface and intracranial electroencephalography (EEG) underwent magnetic resonance (MR) imaging at 3 T with a whole-brain PC-SIRS imaging sequence with alternating SL-on and SL-off and two-dimensional echo-planar readout. The power of the SL radiofrequency pulse was set to 120 Hz to sensitize the sequence to high gamma oscillations present in epileptogenic tissue. Phase cycling was applied to capture distributed current orientations. Voxel-wise subtraction of SL-off from SL-on images enabled the separation of T2* effects from rotary saturation effects. The topography of PC-SIRS effects was compared with the seizure onset zone at intracranial EEG and with surface IED-related potentials. Bayesian statistics were used to test whether prior PC-SIRS information could improve IED source reconstruction. Results Nonhemodynamic resonant saturation effects ipsilateral to the seizure onset zone were detected in six of eight patients (concordance rate, 0.75; 95% confidence interval: 0.40, 0.94) by means of the PC-SIRS technique. They were concordant with IED surface negativity in seven of eight patients (0.88; 95% confidence interval: 0.51, 1.00). Including PC-SIRS as prior information improved the evidence of the standard EEG source models compared with the use of uninformed reconstructions (exceedance probability, 0.77 vs 0.12; Wilcoxon test of model evidence, P < .05). Nonhemodynamic resonant saturation effects resolved in patients with favorable postsurgical outcomes, but persisted in patients with postsurgical seizure recurrence. Conclusion Nonhemodynamic resonant saturation effects are detectable during interictal periods with the PC-SIRS approach in patients with epilepsy. The method may be useful for MR imaging-based detection of neuronal currents in a clinical environment. (©) RSNA, 2016 Online supplemental material is available for this article.
Resumo:
OBJECTIVE In patients with epilepsy, seizure relapse and behavioral impairments can be observed despite the absence of interictal epileptiform discharges (IEDs). Therefore, the characterization of pathologic networks when IEDs are not present could have an important clinical value. Using Granger-causal modeling, we investigated whether directed functional connectivity was altered in electroencephalography (EEG) epochs free of IED in left and right temporal lobe epilepsy (LTLE and RTLE) compared to healthy controls. METHODS Twenty LTLE, 20 RTLE, and 20 healthy controls underwent a resting-state high-density EEG recording. Source activity was obtained for 82 regions of interest (ROIs) using an individual head model and a distributed linear inverse solution. Granger-causal modeling was applied to the source signals of all ROIs. The directed functional connectivity results were compared between groups and correlated with clinical parameters (duration of the disease, age of onset, age, and learning and mood impairments). RESULTS We found that: (1) patients had significantly reduced connectivity from regions concordant with the default-mode network; (2) there was a different network pattern in patients versus controls: the strongest connections arose from the ipsilateral hippocampus in patients and from the posterior cingulate cortex in controls; (3) longer disease duration was associated with lower driving from contralateral and ipsilateral mediolimbic regions in RTLE; (4) aging was associated with a lower driving from regions in or close to the piriform cortex only in patients; and (5) outflow from the anterior cingulate cortex was lower in patients with learning deficits or depression compared to patients without impairments and to controls. SIGNIFICANCE Resting-state network reorganization in the absence of IEDs strengthens the view of chronic and progressive network changes in TLE. These resting-state connectivity alterations could constitute an important biomarker of TLE, and hold promise for using EEG recordings without IEDs for diagnosis or prognosis of this disorder.
Resumo:
OBJECTIVE Epilepsy is increasingly considered as the dysfunction of a pathologic neuronal network (epileptic network) rather than a single focal source. We aimed to assess the interactions between the regions that comprise the epileptic network and to investigate their dependence on the occurrence of interictal epileptiform discharges (IEDs). METHODS We analyzed resting state simultaneous electroencephalography-functional magnetic resonance imaging (EEG-fMRI) recordings in 10 patients with drug-resistant focal epilepsy with multifocal IED-related blood oxygen level-dependent (BOLD) responses and a maximum t-value in the IED field. We computed functional connectivity (FC) maps of the epileptic network using two types of seed: (1) a 10-mm diameter sphere centered in the global maximum of IED-related BOLD map, and (2) the independent component with highest correlation to the IED-related BOLD map, named epileptic component. For both approaches, we compared FC maps before and after regressing out the effect of IEDs in terms of maximum and mean t-values and percentage of map overlap. RESULTS Maximum and mean FC maps t-values were significantly lower after regressing out IEDs at the group level (p < 0.01). Overlap extent was 85% ± 12% and 87% ± 12% when the seed was the 10-mm diameter sphere and the epileptic component, respectively. SIGNIFICANCE Regions involved in a specific epileptic network show coherent BOLD fluctuations independent of scalp EEG IEDs. FC topography and strength is largely preserved by removing the IED effect. This could represent a signature of a sustained pathologic network with contribution from epileptic activity invisible to the scalp EEG.