14 resultados para ICN
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
In this paper we address energy efficiency issues of Information Centric Networking (ICN) architectures. In the proposed framework, we investigate the impact of ICN architectures on energy consumption of networking hardware devices and compare them with the energy consumption of other content dissemination methods. In particular, we investigate the consequences of caching in ICN from the energy efficiency perspective, taking into account the energy consumption of different hardware components in the ICN architectures. Based on the results of the analysis, we address the practical issues regarding the possible deployment and evolution of ICN from an energy-efficiency perspective. Finally, we summarize our findings and discuss the outlook/future perspectives on the energy efficiency of Information-Centric Networks.
Resumo:
This paper discusses several issues of Service-Centric Networking (SCN) as an extension of the Information-Centric Networking (ICN) paradigm. SCN allows extended caching, where not exactly the same content as requested can be read from caches, but similar content can be used to produce the content requested, e.g., by filtering or transcoding. We discuss the issue of naming and routing for general dynamic services for both tightly coupled and decoupled ICN approaches. Challenges and solutions for service management are identified, in particular for composed services, which allow distributed in-network processing of service requests. We introduce the term Software-Defined Service-Centric Networking as an extension of Software-Defined Networking. A prototype implementation for SCN proofs its validity and feasibility and underlines its potential benefits.
Resumo:
Information Centric Networking (ICN) as an emerging paradigm for the Future Internet has initially been rather focusing on bandwidth savings in wired networks, but there might also be some significant potential to support communication in mobile wireless networks as well as opportunistic network scenarios, where end systems have spontaneous but time-limited contact to exchange data. This chapter addresses the reasoning why ICN has an important role in mobile and opportunistic networks by identifying several challenges in mobile and opportunistic Information-Centric Networks and discussing appropriate solutions for them. In particular, it discusses the issues of receiver and source mobility. Source mobility needs special attention. Solutions based on routing protocol extensions, indirection, and separation of name resolution and data transfer are discussed. Moreover, the chapter presents solutions for problems in opportunistic Information-Centric Networks. Among those are mechanisms for efficient content discovery in neighbour nodes, resume mechanisms to recover from intermittent connectivity disruptions, a novel agent delegation mechanisms to offload content discovery and delivery to mobile agent nodes, and the exploitation of overhearing to populate routing tables of mobile nodes. Some preliminary performance evaluation results of these developed mechanisms are provided.
Resumo:
In the recent past, various intrinsic connectivity networks (ICN) have been identified in the resting brain. It has been hypothesized that the fronto-parietal ICN is involved in attentional processes. Evidence for this claim stems from task-related activation studies that show a joint activation of the implicated brain regions during tasks that require sustained attention. In this study, we used functional magnetic resonance imaging (fMRI) to demonstrate that functional connectivity within the fronto-parietal network at rest directly relates to attention. We applied graph theory to functional connectivity data from multiple regions of interest and tested for associations with behavioral measures of attention as provided by the attentional network test (ANT), which we acquired in a separate session outside the MRI environment. We found robust statistical associations with centrality measures of global and local connectivity of nodes within the network with the alerting and executive control subfunctions of attention. The results provide further evidence for the functional significance of ICN and the hypothesized role of the fronto-parietal attention network. Hum Brain Mapp , 2013. © 2013 Wiley Periodicals, Inc.
Resumo:
In this paper, we describe dynamic unicast to increase communication efficiency in opportunistic Information-centric networks. The approach is based on broadcast requests to quickly find content and dynamically creating unicast links to content sources without the need of neighbor discovery. The links are kept temporarily as long as they deliver content and are quickly removed otherwise. Evaluations in mobile networks show that this approach maintains ICN flexibility to support seamless mobile communication and achieves up to 56.6% shorter transmission times compared to broadcast in case of multiple concurrent requesters. Apart from that, dynamic unicast unburdens listener nodes from processing unwanted content resulting in lower processing overhead and power consumption at these nodes. The approach can be easily included into existing ICN architectures using only available data structures.
Resumo:
Information-centric networking (ICN) has been proposed to cope with the drawbacks of the Internet Protocol, namely scalability and security. The majority of research efforts in ICN have focused on routing and caching in wired networks, while little attention has been paid to optimizing the communication and caching efficiency in wireless networks. In this work, we study the application of Raptor codes to Named Data Networking (NDN), which is a popular ICN architecture, in order to minimize the number of transmitted messages and accelerate content retrieval times. We propose RC-NDN, which is a NDN compatible Raptor codes architecture. In contrast to other coding-based NDN solutions that employ network codes, RC-NDN considers security architectures inherent to NDN. Moreover, different from existing network coding based solutions for NDN, RC-NDN does not require significant computational resources, which renders it appropriate for low cost networks. We evaluate RC-NDN in mobile scenarios with high mobility. Evaluations show that RC-NDN outperforms the original NDN significantly. RC-NDN is particularly efficient in dense environments, where retrieval times can be reduced by 83% and the number of Data transmissions by 84.5% compared to NDN.
Resumo:
Information-centric networking (ICN) is a new communication paradigm that aims at increasing security and efficiency of content delivery in communication networks. In recent years, many research efforts in ICN have focused on caching strategies to reduce traffic and increase overall performance by decreasing download times. Since caches need to operate at line speed, they have only a limited size and content can only be stored for a short time. However, if content needs to be available for a longer time, e.g., for delay-tolerant networking or to provide high content availability similar to content delivery networks (CDNs), persistent caching is required. We base our work on the Content-Centric Networking (CCN) architecture and investigate persistent caching by extending the current repository implementation in CCNx. We show by extensive evaluations in a YouTube and webserver traffic scenario that repositories can be efficiently used to increase content availability by significantly increasing cache hit rates.
Resumo:
Information-centric networking (ICN) addresses drawbacks of the Internet protocol, namely scalability and security. ICN is a promising approach for wireless communication because it enables seamless mobile communication, where intermediate or source nodes may change, as well as quick recovery from collisions. In this work, we study wireless multi-hop communication in Content-Centric Networking (CCN), which is a popular ICN architecture. We propose to use two broadcast faces that can be used in alternating order along the path to support multi-hop communication between any nodes in the network. By slightly modifying CCN, we can reduce the number of duplicate Interests by 93.4 % and the number of collisions by 61.4 %. Furthermore, we describe and evaluate different strategies for prefix registration based on overhearing. Strategies that configure prefixes only on one of the two faces can result in at least 27.3 % faster data transmissions.
Resumo:
Information-centric networking (ICN) enables communication in isolated islands, where fixed infrastructure is not available, but also supports seamless communication if the infrastructure is up and running again. In disaster scenarios, when a fixed infrastructure is broken, content discovery algorit hms are required to learn what content is locally available. For example, if preferred content is not available, users may also be satisfied with second best options. In this paper, we describe a new content discovery algorithm and compare it to existing Depth-first and Breadth-first traversal algorithms. Evaluations in mobile scenarios with up to 100 nodes show that it results in better performance, i.e., faster discovery time and smaller traffic overhead, than existing algorithms.
Resumo:
Information-centric networking (ICN) is a promising approach for wireless communication because users can exploit the broadcast nature of the wireless medium to quickly find desired content at nearby nodes. However, wireless multi-hop communication is prone to collisions and it is crucial to quickly detect and react to them to optimize transmission times and a void spurious retransmissions. Several adaptive retransmission timers have been used in related ICN literature but they have not been compared and evaluated in wireless multi-hop environments. In this work, we evaluate existing algorithms in wireless multi-hop communication. We find that existing algorithms are not optimized for wireless communication but slight modificati ons can result in considerably better performance without increasing the number of transmitted Interests.
Resumo:
Information-centric networking (ICN) is a new communication paradigm that aims at increasing security and efficiency of content delivery in communication networks. In recent years, many research efforts in ICN have focused on caching strategies to reduce traffic and increase overall performance by decreasing download times. Since caches need to operate at line-speed, they have only a limited size and content can only be stored for a short time. However, if content needs to be available for a longer time, e.g., for delay-tolerant networking or to provide high content availability similar to content delivery networks (CDNs), persistent caching is required. We base our work on the Content-Centric Networking (CCN) architecture and investigate persistent caching by extending the current repository implementation in CCNx. We show by extensive evaluations in a YouTube and webserver traffic scenario that repositories can be efficiently used to increase content availability by significantly increasing the cache hit rates.
Resumo:
The shift from host-centric to information-centric networking (ICN) promises seamless communication in mobile networks. However, most existing works either consider well-connected networks with high node density or introduce modifications to {ICN} message processing for delay-tolerant Networking (DTN). In this work, we present agent-based content retrieval, which provides information-centric {DTN} support as an application module without modifications to {ICN} message processing. This enables flexible interoperability in changing environments. If no content source can be found via wireless multi-hop routing, requesters may exploit the mobility of neighbor nodes (called agents) by delegating content retrieval to them. Agents that receive a delegation and move closer to content sources can retrieve data and return it back to requesters. We show that agent-based content retrieval may be even more efficient in scenarios where multi-hop communication is possible. Furthermore, we show that broadcast communication may not be necessarily the best option since dynamic unicast requests have little overhead and can better exploit short contact times between nodes (no broadcast delays required for duplicate suppression).
Resumo:
Abstract Information-centric networking (ICN) offers new perspectives on mobile ad-hoc communication because routing is based on names but not on endpoint identifiers. Since every content object has a unique name and is signed, authentic content can be stored and cached by any node. If connectivity to a content source breaks, it is not necessarily required to build a new path to the same source but content can also be retrieved from a closer node that provides the same content copy. For example, in case of collisions, retransmissions do not need to be performed over the entire path but due to caching only over the link where the collision occurred. Furthermore, multiple requests can be aggregated to improve scalability of wireless multi-hop communication. In this work, we base our investigations on Content-Centric Networking (CCN), which is a popular {ICN} architecture. While related works in wireless {CCN} communication are based on broadcast communication exclusively, we show that this is not needed for efficient mobile ad-hoc communication. With Dynamic Unicast requesters can build unicast paths to content sources after they have been identified via broadcast. We have implemented Dynamic Unicast in CCNx, which provides a reference implementation of the {CCN} concepts, and performed extensive evaluations in diverse mobile scenarios using NS3-DCE, the direct code execution framework for the {NS3} network simulator. Our evaluations show that Dynamic Unicast can result in more efficient communication than broadcast communication, but still supports all {CCN} advantages such as caching, scalability and implicit content discovery.
Resumo:
Information-centric networking (ICN) is a new communication paradigm that has been proposed to cope with drawbacks of host-based communication protocols, namely scalability and security. In this thesis, we base our work on Named Data Networking (NDN), which is a popular ICN architecture, and investigate NDN in the context of wireless and mobile ad hoc networks. In a first part, we focus on NDN efficiency (and potential improvements) in wireless environments by investigating NDN in wireless one-hop communication, i.e., without any routing protocols. A basic requirement to initiate informationcentric communication is the knowledge of existing and available content names. Therefore, we develop three opportunistic content discovery algorithms and evaluate them in diverse scenarios for different node densities and content distributions. After content names are known, requesters can retrieve content opportunistically from any neighbor node that provides the content. However, in case of short contact times to content sources, content retrieval may be disrupted. Therefore, we develop a requester application that keeps meta information of disrupted content retrievals and enables resume operations when a new content source has been found. Besides message efficiency, we also evaluate power consumption of information-centric broadcast and unicast communication. Based on our findings, we develop two mechanisms to increase efficiency of information-centric wireless one-hop communication. The first approach called Dynamic Unicast (DU) avoids broadcast communication whenever possible since broadcast transmissions result in more duplicate Data transmissions, lower data rates and higher energy consumption on mobile nodes, which are not interested in overheard Data, compared to unicast communication. Hence, DU uses broadcast communication only until a content source has been found and then retrieves content directly via unicast from the same source. The second approach called RC-NDN targets efficiency of wireless broadcast communication by reducing the number of duplicate Data transmissions. In particular, RC-NDN is a Data encoding scheme for content sources that increases diversity in wireless broadcast transmissions such that multiple concurrent requesters can profit from each others’ (overheard) message transmissions. If requesters and content sources are not in one-hop distance to each other, requests need to be forwarded via multi-hop routing. Therefore, in a second part of this thesis, we investigate information-centric wireless multi-hop communication. First, we consider multi-hop broadcast communication in the context of rather static community networks. We introduce the concept of preferred forwarders, which relay Interest messages slightly faster than non-preferred forwarders to reduce redundant duplicate message transmissions. While this approach works well in static networks, the performance may degrade in mobile networks if preferred forwarders may regularly move away. Thus, to enable routing in mobile ad hoc networks, we extend DU for multi-hop communication. Compared to one-hop communication, multi-hop DU requires efficient path update mechanisms (since multi-hop paths may expire quickly) and new forwarding strategies to maintain NDN benefits (request aggregation and caching) such that only a few messages need to be transmitted over the entire end-to-end path even in case of multiple concurrent requesters. To perform quick retransmission in case of collisions or other transmission errors, we implement and evaluate retransmission timers from related work and compare them to CCNTimer, which is a new algorithm that enables shorter content retrieval times in information-centric wireless multi-hop communication. Yet, in case of intermittent connectivity between requesters and content sources, multi-hop routing protocols may not work because they require continuous end-to-end paths. Therefore, we present agent-based content retrieval (ACR) for delay-tolerant networks. In ACR, requester nodes can delegate content retrieval to mobile agent nodes, which move closer to content sources, can retrieve content and return it to requesters. Thus, ACR exploits the mobility of agent nodes to retrieve content from remote locations. To enable delay-tolerant communication via agents, retrieved content needs to be stored persistently such that requesters can verify its authenticity via original publisher signatures. To achieve this, we develop a persistent caching concept that maintains received popular content in repositories and deletes unpopular content if free space is required. Since our persistent caching concept can complement regular short-term caching in the content store, it can also be used for network caching to store popular delay-tolerant content at edge routers (to reduce network traffic and improve network performance) while real-time traffic can still be maintained and served from the content store.