138 resultados para Hypothalamus, Middle
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
The goals of any treatment of cervical spine injuries are: return to maximum functional ability, minimum of residual pain, decrease of any neurological deficit, minimum of residual deformity and prevention of further disability. The advantages of surgical treatment are the ability to reach optimal reduction, immediate stability, direct decompression of the cord and the exiting roots, the need for only minimum external fixation, the possibility for early mobilisation and clearly decreased nursing problems. There are some reasons why those goals can be reached better by anterior surgery. Usually the bony compression of the cord and roots comes from the front therefore anterior decompression is usually the procedure of choice. Also, the anterior stabilisation with a plate is usually simpler than a posterior instrumentation. It needs to be stressed that closed reduction by traction can align the fractured spine and indirectly decompress the neural structures in about 70%. The necessary weight is 2.5 kg per level of injury. In the upper cervical spine, the odontoid fracture type 2 is an indication for anterior surgery by direct screw fixation. Joint C1/C2 dislocations or fractures or certain odontoid fractures can be treated with a fusion of the C1/C2 joint by anterior transarticular screw fixation. In the lower and middle cervical spine, anterior plating combined with iliac crest or fibular strut graft is the procedure of choice, however, a solid graft can also be replaced by filled solid or expandable vertebral cages. The complication of this surgery is low, when properly executed and anterior surgery may only be contra-indicated in case of a significant lesion or locked joints.
Resumo:
Greenstick fractures suffered during growth have a high risk for refracture and posttraumatic deformity, particularly at the forearm diaphysis. The use of a preemptive completion of the fracture by manipulation of the concave cortex is controversial and data supporting this approach are few.
Resumo:
The sleep-wake disorder narcolepsy with cataplexy is associated with the loss of hypocretin-(orexin-) producing neurons in the lateral hypothalamus. Several studies have reported abnormal cerebral activation in patients with narcolepsy with cataplexy. It remains unclear, however, whether these functional changes are related to structural alterations, particularly at the cortical level. To quantify structural brain changes associated with narcolepsy with cataplexy, we used high-resolution T1-weighted magnetic resonance imaging (MRI) in 12 patients compared with 12 healthy participants matched for age and gender. Subcortical and regional cortical volumes were measured using a method unbiased by non-linear registration. Further whole-brain analyses were conducted, measuring cortical characteristics, such as cortical thickness and gyrification, at thousands of points across each hemisphere using validated algorithms. Statistical analyses accounted for an effect of age and gender. We observed decreased cortical volume in the left paracentral lobule and increased cortical volume in the left caudal part of the middle frontal gyrus in narcoleptic patients compared with controls. Cortical thickness in prefrontal areas was inversely correlated with the severity of narcolepsy. Further, we observed several clusters of cortical thinning in patients with childhood or adolescent onset of narcolepsy compared with patients with adult onset of the disease. Our results suggest that specific anatomical changes may differentiate subgroups of narcolepsy patients with different clinical profiles (such as varying symptom severity or different age at onset). Future studies with larger groups of sleepy patients are required to assess whether distinct patterns of anatomical changes may distinguish narcolepsy from non-hypocretin-deficient hypersomnia disorders.