32 resultados para Hybridization, Vegetable
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
Agricultural workers are exposed to various risks, including chemical agents, noise, and many other factors. One of the most characteristic and least known risk factors is constituted by the microclimatic conditions in the different phases of work (in field, in greenhouse, etc). A typical condition is thermal stress due to high temperatures during harvesting operations in open fields or in greenhouses. In Italy, harvesting is carried out for many hours during the day, mainly in the summer, with temperatures often higher than 30 degrees C. According to ISO 7243, these conditions can be considered dangerous for workers' health. The aim of this study is to assess the risks of exposure to microclimatic conditions (heat) for fruit and vegetable harvesters in central Italy by applying methods established by international standards. In order to estimate the risk for workers, the air temperature, radiative temperature, and air speed were measured using instruments in conformity with ISO 7726. Thermodynamic parameters and two more subjective parameters, clothing and the metabolic heat production rate related to the worker's physical activity, were used to calculate the predicted heat strain (PHS) for the exposed workers in conformity with ISO 7933. Environmental and subjective parameters were also measured for greenhouse workers, according to ISO 7243, in order to calculate the wet-bulb globe temperature (WBGT). The results show a slight risk for workers during manual harvesting in the field. On the other hand, the data collected in the greenhouses show that the risk for workers must not be underestimated. The results of the study show that, for manual harvesting work in climates similar to central Italy, it is essential to provide plenty of drinking water and acclimatization for the workers in order to reduce health risks. Moreover, the study emphasizes that the possible health risks for greenhouse workers increase from the month of April through July.
Resumo:
Whitefish, genus Coregonus, show exceptional levels of phenotypic diversity with sympatric morphs occurring in numerous postglacial lakes in the northern hemisphere. Here, we studied the effects of human-induced eutrophication on sympatric whitefish morphs in the Swiss lake, Lake Thun. In particular, we addressed the questions whether eutrophication (i) induced hybridization between two ecologically divergent summer-spawning morphs through a loss of environmental heterogeneity, and (ii) induced rapid adaptive morphological changes through changes in the food web structure. Genetic analysis based on 11 microsatellite loci of 282 spawners revealed that the pelagic and the benthic morph represent highly distinct gene pools occurring at different relative proportions on all seven known spawning sites. Gill raker counts, a highly heritable trait, showed nearly discrete distributions for the two morphs. Multilocus genotypes characteristic of the pelagic morph had more gill rakers than genotypes characteristic of benthic morph. Using Bayesian methods, we found indications of recent but limited introgressive hybridization. Comparisons with historical gill raker data yielded median evolutionary rates of 0.24 haldanes and median selection intensities of 0.27 for this trait in both morphs for 1948-2004 suggesting rapid evolution through directional selection at this trait. However, phenotypic plasticity as an alternative explanation for this phenotypic change cannot be discarded. We hypothesize that both the temporal shifts in mean gill raker counts and the recent hybridization reflect responses to changes in the trophic state of the lake induced by pollution in the 1960s, which created novel selection pressures with respect to feeding niches and spawning site preferences.
Resumo:
The three-spined stickleback is a widespread Holarctic species complex that radiated from the sea into freshwaters after the retreat of the Pleistocene ice sheets. In Switzerland, sticklebacks were absent with the exception of the far northwest, but different introduced populations have expanded to occupy a wide range of habitats since the late 19th century. A well-studied adaptive phenotypic trait in sticklebacks is the number of lateral plates. With few exceptions, freshwater and marine populations in Europe are fixed for either the low plated phenotype or the fully plated phenotype, respectively. Switzerland, in contrast, harbours in close proximity the full range of phenotypic variation known from across the continent. We addressed the phylogeographic origins of Swiss sticklebacks using mitochondrial partial cytochrome b and control region sequences. We found only five different haplotypes but these originated from three distinct European regions, fixed for different plate phenotypes. These lineages occur largely in isolation at opposite ends of Switzerland, but co-occur in a large central part. Across the country, we found a strong correlation between a microsatellite linked to the high plate ectodysplasin allele and the mitochondrial haplotype from a region where the fully plated phenotype is fixed. Phylogenomic and population genomic analysis of 481 polymorphic amplified fragment length polymorphism loci indicate genetic admixture in the central part of the country. The same part of the country also carries elevated within-population phenotypic variation. We conclude that during the recent invasive range expansion of sticklebacks in Switzerland, adaptive and neutral between-population genetic variation was converted into within-population variation, raising the possibility that hybridization between colonizing lineages contributed to the ecological success of sticklebacks in Switzerland.
Resumo:
The physical localization of the epidermal growth factor receptor (EGFR) gene was performed on donkey chromosomes. Bacterial artificial chromosome DNA containing the equine EGFR gene was used to map this gene by fluorescent in situ hybridization on donkey metaphase chromosomes. The gene was mapped on donkey 1q21.1 region.
Resumo:
Dyskeratosis congenita (DC) is an inherited bone marrow failure syndrome in which the known susceptibility genes (DKC1, TERC, and TERT) belong to the telomere maintenance pathway; patients with DC have very short telomeres. We used multicolor flow fluorescence in situ hybridization analysis of median telomere length in total blood leukocytes, granulocytes, lymphocytes, and several lymphocyte subsets to confirm the diagnosis of DC, distinguish patients with DC from unaffected family members, identify clinically silent DC carriers, and discriminate between patients with DC and those with other bone marrow failure disorders. We defined "very short" telomeres as below the first percentile measured among 400 healthy control subjects over the entire age range. Diagnostic sensitivity and specificity of very short telomeres for DC were more than 90% for total lymphocytes, CD45RA+/CD20- naive T cells, and CD20+ B cells. Granulocyte and total leukocyte assays were not specific; CD45RA- memory T cells and CD57+ NK/NKT were not sensitive. We observed very short telomeres in a clinically normal family member who subsequently developed DC. We propose adding leukocyte subset flow fluorescence in situ hybridization telomere length measurement to the evaluation of patients and families suspected to have DC, because the correct diagnosis will substantially affect patient management.
Resumo:
Human activities, such intentional and unintentional transplantations, and habitat alterations including the establishment of migration corridors, generate increasing opportunities for formerly allopatric taxa to meet and to hybridize. There is indeed increasing evidence that these introduced plant and animal taxa (including crop plants and domesticated animal taxa) frequently hybridize with native relatives and with other introduced taxa, leading to a growing concern that these hybridizations may compromise the genetic integrity of native taxa to the point of causing extinctions (Abbott 1992; Rhymer and Simberloff 1996; Levin et al. 1996; Ellstrand and Schierenbeck 2000; Vilà et al. 2000). A decade ago, Rhymer and Simberloff (1996) stated in their review on this topic that the known cases are probably just the tip of the iceberg.Using the search term ‘hybridization and introgression’, the Web of Science database yields a total of 1,178 research articles, of which 935 (or 80 %) have been published after 1995 (Fig. 16.1). Indeed, the evidence for natural and man-induced hybridization and introgression appears to have increased exponentially these last few years.
Resumo:
A considerable fraction of the world's biodiversity is of recent evolutionary origin and has evolved as a by-product of, and is maintained by, divergent adaptation in heterogeneous environments. Conservationists have paid attention to genetic homogenization caused by human-induced translocations (e.g. biological invasions and stocking), and to the importance of environmental heterogeneity for the ecological coexistence of species. However, far less attention has been paid to the consequences of loss of environmental heterogeneity to the genetic coexistence of sympatric species. Our review of empirical observations and our theoretical considerations on the causes and consequences of interspecific hybridization suggest that a loss of environmental heterogeneity causes a loss of biodiversity through increased genetic admixture, effectively reversing speciation. Loss of heterogeneity relaxes divergent selection and removes ecological barriers to gene flow between divergently adapted species, promoting interspecific introgressive hybridization. Since heterogeneity of natural environments is rapidly deteriorating in most biomes, the evolutionary ecology of speciation reversal ought to be fully integrated into conservation biology.
Resumo:
BACKGROUND: As for Cystic Fibrosis (CF) and many other hereditary diseases there is still a lack in understanding the relationship between genetic (e.g. allelic) and phenotypic diversity. Therefore methods which allow fine quantification of allelic proportions of mRNA transcripts are of high importance. METHODS: We used either genomic DNA (gDNA) or total RNA extracted from nasal cells as starting nucleic acid template for our assay. The subjects included in this study were 9 CF patients compound heterozygous for the F508del mutation and each one F508del homozygous and one wild type homozygous respectively. We established a novel ligation based quantification method which allows fine quantification of the allelic proportions of ss and ds CFTR cDNA. To verify reliability and accuracy of this novel assay we compared it with semiquantitative fluorescent PCR (SQF-PCR). RESULTS: We established a novel assay for allele specific quantification of gene expression which combines the benefits of the specificity of the ligation reaction and the accuracy of quantitative real-time PCR. The comparison with SQF-PCR clearly demonstrates that LASQ allows fine quantification of allelic proportions. CONCLUSION: This assay represents an alternative to other fine quantitative methods such as ARMS PCR and Pyrosequencing.
Resumo:
Molecular markers reliably predicting failure or success of Bacillus Calmette-Guérin (BCG) in the treatment of nonmuscle-invasive urothelial bladder cancer (NMIBC) are lacking. The aim of our study was to evaluate the value of cytology and chromosomal aberrations detected by fluorescence in situ hybridization (FISH) in predicting failure to BCG therapy. Sixty-eight patients with NMIBC were prospectively recruited. Bladder washings collected before and after BCG instillation were analyzed by conventional cytology and by multitarget FISH assay (UroVysion, Abbott/Vysis, Des Plaines, IL) for aberrations of chromosomes 3, 7, 17 and 9p21. Persistent and recurrent bladder cancers were defined as positive events during follow-up. Twenty-six of 68 (38%) NMIBC failed to BCG. Both positive post-BCG cytology and positive post-BCG FISH were significantly associated with failure of BCG (hazard ratio (HR)= 5.1 and HR= 5.6, respectively; p < 0.001 each) when compared to those with negative results. In the subgroup of nondefinitive cytology (all except those with unequivocally positive cytology), FISH was superior to cytology as a marker of relapse (HR= 6.2 and 1.4, respectively). Cytology and FISH in post-BCG bladder washings are highly interrelated and a positive result predicts failure to BCG therapy in patients with NMIBC equally well. FISH is most useful in the diagnostically less certain cytology categories but does not provide additional information in clearly malignant cytology.