2 resultados para Hyaluronate
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
Effectively assessing subtle hepatic metabolic functions by novel non-invasive tests might be of clinical utility in scoring NAFLD (non-alcoholic fatty liver disease) and in identifying altered metabolic pathways. The present study was conducted on 39 (20 lean and 19 obese) hypertransaminasemic patients with histologically proven NAFLD {ranging from simple steatosis to severe steatohepatitis [NASH (non-alcoholic steatohepatitis)] and fibrosis} and 28 (20 lean and eight overweight) healthy controls, who underwent stable isotope breath testing ([(13)C]methacetin and [(13)C]ketoisocaproate) for microsomal and mitochondrial liver function in relation to histology, serum hyaluronate, as a marker of liver fibrosis, and body size. Compared with healthy subjects and patients with simple steatosis, NASH patients had enhanced methacetin demethylation (P=0.001), but decreased (P=0.001) and delayed (P=0.006) ketoisocaproate decarboxylation, which was inversely related (P=0.001) to the degree of histological fibrosis (r=-0.701), serum hyaluronate (r=-0.644) and body size (r=-0.485). Ketoisocaproate decarboxylation was impaired further in obese patients with NASH, but not in patients with simple steatosis and in overweight controls. NASH and insulin resistance were independently associated with an abnormal ketoisocaproate breath test (P=0.001). The cut-off value of 9.6% cumulative expired (13)CO(2) for ketoisocaproate at 60 min was associated with the highest prediction (positive predictive value, 0.90; negative predictive value, 0.73) for NASH, yielding an overall sensitivity of 68% and specificity of 94%. In conclusion, both microsomal and mitochondrial functions are disturbed in NASH. Therefore stable isotope breath tests may usefully contribute to a better and non-invasive characterization of patients with NAFLD.
Resumo:
The use of polymethylmethacrylate (PMMA) cement to reinforce fragile or broken vertebral bodies (vertebroplasty) leads to extensive bone stiffening. Fractures in the adjacent vertebrae may be the consequence of this procedure. PMMA with a reduced Young's modulus may be more suitable. The goal of this study was to produce and characterize stiffness adapted PMMA bone cements. Porous PMMA bone cements were produced by combining PMMA with various volume fractions of an aqueous sodium hyaluronate solution. Porosity, Young's modulus, yield strength, polymerization temperature, setting time, viscosity, injectability, and monomer release of those porous cements were investigated. Samples presented pores with diameters in the range of 25-260 microm and porosity up to 56%. Young's modulus and yield strength decreased from 930 to 50 MPa and from 39 to 1.3 MPa between 0 and 56% porosity, respectively. The polymerization temperature decreased from 68 degrees C (0%, regular cement) to 41 degrees C for cement having 30% aqueous fraction. Setting time decreased from 1020 s (0%, regular cement) to 720 s for the 30% composition. Viscosity of the 30% composition (145 Pa s) was higher than the ones received from regular cement and the 45% composition (100-125 Pa s). The monomer release was in the range of 4-10 mg/mL for all porosities; showing no higher release for the porous materials. The generation of pores using an aqueous gel seems to be a promising method to make the PMMA cement more compliant and lower its mechanical properties to values close to those of cancellous bone.