18 resultados para Huttunen, Niko
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
Code duplication is common in current programming-practice: programmers search for snippets of code, incorporate them into their projects and then modify them to their needs. In today's practice, no automated scheme is in place to inform both parties of any distant changes of the code. As code snippets continues to evolve both on the side of the user and on the side of the author, both may wish to benefit from remote bug fixes or refinements --- authors may be interested in the actual usage of their code snippets, and researchers could gather information on clone usage. We propose maintaining a link between software clones across repositories and outline how the links can be created and maintained.
Resumo:
We present the results of an investigation into the nature of the information needs of software developers who work in projects that are part of larger ecosystems. In an open- question survey we asked framework and library developers about their information needs with respect to both their upstream and downstream projects. We investigated what kind of information is required, why is it necessary, and how the developers obtain this information. The results show that the downstream needs are grouped into three categories roughly corresponding to the different stages in their relation with an upstream: selection, adop- tion, and co-evolution. The less numerous upstream needs are grouped into two categories: project statistics and code usage. The current practices part of the study shows that to sat- isfy many of these needs developers use non-specific tools and ad hoc methods. We believe that this is a largely unexplored area of research.
Resumo:
The success of combination antiretroviral therapy is limited by the evolutionary escape dynamics of HIV-1. We used Isotonic Conjunctive Bayesian Networks (I-CBNs), a class of probabilistic graphical models, to describe this process. We employed partial order constraints among viral resistance mutations, which give rise to a limited set of mutational pathways, and we modeled phenotypic drug resistance as monotonically increasing along any escape pathway. Using this model, the individualized genetic barrier (IGB) to each drug is derived as the probability of the virus not acquiring additional mutations that confer resistance. Drug-specific IGBs were combined to obtain the IGB to an entire regimen, which quantifies the virus' genetic potential for developing drug resistance under combination therapy. The IGB was tested as a predictor of therapeutic outcome using between 2,185 and 2,631 treatment change episodes of subtype B infected patients from the Swiss HIV Cohort Study Database, a large observational cohort. Using logistic regression, significant univariate predictors included most of the 18 drugs and single-drug IGBs, the IGB to the entire regimen, the expert rules-based genotypic susceptibility score (GSS), several individual mutations, and the peak viral load before treatment change. In the multivariate analysis, the only genotype-derived variables that remained significantly associated with virological success were GSS and, with 10-fold stronger association, IGB to regimen. When predicting suppression of viral load below 400 cps/ml, IGB outperformed GSS and also improved GSS-containing predictors significantly, but the difference was not significant for suppression below 50 cps/ml. Thus, the IGB to regimen is a novel data-derived predictor of treatment outcome that has potential to improve the interpretation of genotypic drug resistance tests.
Resumo:
Next-generation sequencing (NGS) is a valuable tool for the detection and quantification of HIV-1 variants in vivo. However, these technologies require detailed characterization and control of artificially induced errors to be applicable for accurate haplotype reconstruction. To investigate the occurrence of substitutions, insertions, and deletions at the individual steps of RT-PCR and NGS, 454 pyrosequencing was performed on amplified and non-amplified HIV-1 genomes. Artificial recombination was explored by mixing five different HIV-1 clonal strains (5-virus-mix) and applying different RT-PCR conditions followed by 454 pyrosequencing. Error rates ranged from 0.04-0.66% and were similar in amplified and non-amplified samples. Discrepancies were observed between forward and reverse reads, indicating that most errors were introduced during the pyrosequencing step. Using the 5-virus-mix, non-optimized, standard RT-PCR conditions introduced artificial recombinants in a fraction of at least 30% of the reads that subsequently led to an underestimation of true haplotype frequencies. We minimized the fraction of recombinants down to 0.9-2.6% by optimized, artifact-reducing RT-PCR conditions. This approach enabled correct haplotype reconstruction and frequency estimations consistent with reference data obtained by single genome amplification. RT-PCR conditions are crucial for correct frequency estimation and analysis of haplotypes in heterogeneous virus populations. We developed an RT-PCR procedure to generate NGS data useful for reliable haplotype reconstruction and quantification.