5 resultados para Humbert, Jean Joseph Amable, -1823.

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background Meadows are regularly mown in order to provide fodder or litter for livestock and to prevent vegetation succession. However, the time of year at which meadows should be first mown in order to maximize biological diversity remains controversial and may vary with respect to context and focal taxa. We carried out a systematic review and meta-analysis on the effects of delaying the first mowing date upon plants and invertebrates in European meadowlands. Methods Following a CEE protocol, ISI Web of Science, Science Direct, JSTOR, Google and Google Scholar were searched. We recorded all studies that compared the species richness of plants, or the species richness or abundance of invertebrates, between grassland plots mown at a postponed date (treatment) vs plots mown earlier (control). In order to be included in the meta-analysis, compared plots had to be similar in all management respects, except the date of the first cut that was (mostly experimentally) manipulated. They were also to be located in the same meadow type. Meta-analyses applying Hedges’d statistic were performed. Results Plant species richness responded differently to the date to which mowing was postponed. Delaying mowing from spring to summer had a positive effect, while delaying either from spring to fall, or from early summer to later in the season had a negative effect. Invertebrates were expected to show a strong response to delayed mowing due to their dependence on sward structure, but only species richness showed a clearly significant positive response. Invertebrate abundance was positively influenced in only a few studies. Conclusions The present meta-analysis shows that in general delaying the first mowing date in European meadowlands has either positive or neutral effects on plant and invertebrate biodiversity (except for plant species richness when delaying from spring to fall or from early summer to later). Overall, there was also strong between-study heterogeneity, pointing to other major confounding factors, the elucidation of which requires further field experiments with both larger sample sizes and a distinction between taxon-specific and meadow-type-specific responses.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Semi-natural grasslands are widely recognized for their high ecological value. They often count among the most species-rich habitats, especially in traditional cultural landscapes. Maintaining and/or restoring them is a top priority, but nevertheless represents a real conservation challenge, especially regarding their invertebrate assemblages. The main goal of this study was to experimentally investigate the influence of four different mowing regimes on orthopteran communities and populations: (1) control meadow (C-meadow): mowing regime according to the Swiss regulations for extensively managed meadows declared as ecological compensation areas, i.e. first cut not before 15 June; (2) first cut not before 15 July (delayed treatment, D-meadow); (3) first cut not before 15 June and second cut not earlier than 8 weeks from the first cut (8W-meadow); (4) refuges left uncut on 10–20% of the meadow area (R-meadow). Data were collected two years after the introduction of these mowing treatments. Orthopteran densities from spring to early summer were five times higher in D-meadows, compared to C-meadows. In R-meadows, densities were, on average, twice as high as in C-meadows, while mean species richness was 23% higher in R-meadows than in C-meadows. Provided that farmers were given the appropriate financial incentives, the D- and R-meadow regimes could be relatively easy to implement within agri-environment schemes. Such meadows could deliver substantial benefits for functional biodiversity, including sustenance to many secondary consumers dependent on field invertebrates as staple food.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The response of montane and subalpine hay meadow plant and arthropod communities to the application of liquid manure and aerial irrigation – two novel, rapidly spreading management practices – remains poorly understood, which hampers the formulation of best practice management recommendations for both hay production and biodiversity preservation. In these nutrient-poor mountain grasslands, a moderate management regime could enhance overall conditions for biodiversity. This study experimentally assessed, at the site scale, among low-input montane and subalpine meadows, the short-term effects (1 year) of a moderate intensification (slurry fertilization: 26.7–53.3 kg N·ha−1·year−1; irrigation with sprinklers: 20 mm·week−1; singly or combined together) on plant species richness, vegetation structure, hay production, and arthropod abundance and biomass in the inner European Alps (Valais, SW Switzerland). Results show that (1) montane and subalpine hay meadow ecological communities respond very rapidly to an intensification of management practices; (2) on a short-term basis, a moderate intensification of very low-input hay meadows has positive effects on plant species richness, vegetation structure, hay production, and arthropod abundance and biomass; (3) vegetation structure is likely to be the key factor limiting arthropod abundance and biomass. Our ongoing experiments will in the longer term identify which level of management intensity achieves an optimal balance between biodiversity and hay production.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Bees are a key component of biodiversity as they ensure a crucial ecosystem service: pollination. This ecosystem service is nowadays threatened, because bees suffer from agricultural intensification. Yet, bees rarely benefit from the measures established to promote biodiversity in farmland, such as agri-environment schemes (AES). We experimentally tested if the spatio-temporal modification of mowing regimes within extensively managed hay meadows, a widespread AES, can promote bees. We applied a randomized block design, replicated 12 times across the Swiss lowlands, that consisted of three different mowing treatments: 1) first cut not before 15 June (conventional regime for meadows within Swiss AES); 2) first cut not before 15 June, as treatment 1 but with 15% of area left uncut serving as a refuge; 3) first cut not before 15 July. Bees were collected with pan traps, twice during the vegetation season (before and after mowing). Wild bee abundance and species richness significantly increased in meadows where uncut refuges were left, in comparison to meadows without refuges: there was both an immediate (within year) and cumulative (from one year to the following) positive effect of the uncut refuge treatment. An immediate positive effect of delayed mowing was also evidenced in both wild bees and honey bees. Conventional AES could easily accommodate such a simple management prescription that promotes farmland biodiversity and is likely to enhance pollination services.