23 resultados para Human memory
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
Little is known about the genes and proteins involved in the process of human memory. To identify genetic factors related to human episodic memory performance, we conducted an ultra-high-density genome-wide screen at > 500 000 single nucleotide polymorphisms (SNPs) in a sample of normal young adults stratified for performance on an episodic recall memory test. Analysis of this data identified SNPs within the calmodulin-binding transcription activator 1 (CAMTA1) gene that were significantly associated with memory performance. A follow up study, focused on the CAMTA1 locus in an independent cohort consisting of cognitively normal young adults, singled out SNP rs4908449 with a P-value of 0.0002 as the most significant associated SNP in the region. These validated genetic findings were further supported by the identification of CAMTA1 transcript enrichment in memory-related human brain regions and through a functional magnetic resonance imaging experiment on individuals matched for memory performance that identified CAMTA1 allele-specific upregulation of medial temporal lobe brain activity in those individuals harboring the 'at-risk' allele for poorer memory performance. The CAMTA1 locus encodes a purported transcription factor that interfaces with the calcium-calmodulin system of the cell to alter gene expression patterns. Our validated genomic and functional biological findings described herein suggest a role for CAMTA1 in human episodic memory.
Resumo:
Stress is a strong modulator of memory function. However, memory is not a unitary process and stress seems to exert different effects depending on the memory type under study. Here, we explored the impact of social stress on different aspects of human memory, including tests for explicit memory and working memory (for neutral materials), as well as implicit memory (perceptual priming, contextual priming and classical conditioning for emotional stimuli). A total of 35 young adult male students were randomly assigned to either the stress or the control group, with stress being induced by the Trier Social Stress Test (TSST). Salivary cortisol levels were assessed repeatedly throughout the experiment to validate stress effects. The results support previous evidence indicating complex effects of stress on different types of memory: A pronounced working memory deficit was associated with exposure to stress. No performance differences between groups of stressed and unstressed subjects were observed in verbal explicit memory (but note that learning and recall took place within 1 h and immediately following stress) or in implicit memory for neutral stimuli. Stress enhanced classical conditioning for negative but not positive stimuli. In addition, stress improved spatial explicit memory. These results reinforce the view that acute stress can be highly disruptive for working memory processing. They provide new evidence for the facilitating effects of stress on implicit memory for negative emotional materials. Our findings are discussed with respect to their potential relevance for psychiatric disorders, such as post traumatic stress disorder.
Resumo:
Textbooks divide between human memory systems based on consciousness. Hippocampus is thought to support only conscious encoding, while neocortex supports both conscious and unconscious encoding. We tested whether processing modes, not consciousness, divide between memory systems in three neuroimaging experiments with 11 amnesic patients (mean age = 45.55 years, standard deviation = 8.74, range = 23-60) and 11 matched healthy control subjects. Examined processing modes were single item versus relational encoding with only relational encoding hypothesized to depend on hippocampus. Participants encoded and later retrieved either single words or new relations between words. Consciousness of encoding was excluded by subliminal (invisible) word presentation. Amnesic patients and controls performed equally well on the single item task activating prefrontal cortex. But only the controls succeeded on the relational task activating the hippocampus, while amnesic patients failed as a group. Hence, unconscious relational encoding, but not unconscious single item encoding, depended on hippocampus. Yet, three patients performed normally on unconscious relational encoding in spite of amnesia capitalizing on spared hippocampal tissue and connections to language cortex. This pattern of results suggests that processing modes divide between memory systems, while consciousness divides between levels of function within a memory system.
Resumo:
In humans, theta band (5-7 Hz) power typically increases when performing cognitively demanding working memory (WM) tasks, and simultaneous EEG-fMRI recordings have revealed an inverse relationship between theta power and the BOLD (blood oxygen level dependent) signal in the default mode network during WM. However, synchronization also plays a fundamental role in cognitive processing, and the level of theta and higher frequency band synchronization is modulated during WM. Yet, little is known about the link between BOLD, EEG power, and EEG synchronization during WM, and how these measures develop with human brain maturation or relate to behavioral changes. We examined EEG-BOLD signal correlations from 18 young adults and 15 school-aged children for age-dependent effects during a load-modulated Sternberg WM task. Frontal load (in-)dependent EEG theta power was significantly enhanced in children compared to adults, while adults showed stronger fMRI load effects. Children demonstrated a stronger negative correlation between global theta power and the BOLD signal in the default mode network relative to adults. Therefore, we conclude that theta power mediates the suppression of a task-irrelevant network. We further conclude that children suppress this network even more than adults, probably from an increased level of task-preparedness to compensate for not fully mature cognitive functions, reflected in lower response accuracy and increased reaction time. In contrast to power, correlations between instantaneous theta global field synchronization and the BOLD signal were exclusively positive in both age groups but only significant in adults in the frontal-parietal and posterior cingulate cortices. Furthermore, theta synchronization was weaker in children and was--in contrast to EEG power--positively correlated with response accuracy in both age groups. In summary we conclude that theta EEG-BOLD signal correlations differ between spectral power and synchronization and that these opposite correlations with different distributions undergo similar and significant neuronal developments with brain maturation.
Resumo:
The present study investigated the role of the right posterior parietal cortex (PPC) in the triggering of memory-guided saccades by means of double-pulse transcranial magnetic stimulation (dTMS). Shortly before saccade onset, dTMS with different interstimulus intervals (ISI; 35, 50, 65 or 80 ms) was applied. For contralateral saccades, dTMS significantly decreased saccadic latency with an ISI of 80 ms and increased saccadic gain with an ISI of 65 and 80 ms. Together with the findings of a previous study during frontal eye field (FEF) stimulation the present results demonstrate similarities and differences between both regions in the execution of memory-guided saccades. Firstly, dTMS facilitates saccade triggering in both regions, but the timing is different. Secondly, dTMS over the PPC provokes a hypermetria of contralateral memory-guided saccades that was not observed during FEF stimulation. The results are discussed within the context of recent neurophysiological findings in monkeys.
Resumo:
Regulatory T cells (Tregs), which are characterized by expression of the transcription factor Foxp3, are a dynamic and heterogeneous population of cells that control immune responses and prevent autoimmunity. We recently identified a subset of Tregs in murine skin with properties typical of memory cells and defined this population as memory Tregs (mTregs). Due to the importance of these cells in regulating tissue inflammation in mice, we analyzed this cell population in humans and found that almost all Tregs in normal skin had an activated memory phenotype. Compared with mTregs in peripheral blood, cutaneous mTregs had unique cell surface marker expression and cytokine production. In normal human skin, mTregs preferentially localized to hair follicles and were more abundant in skin with high hair density. Sequence comparison of TCRs from conventional memory T helper cells and mTregs isolated from skin revealed little homology between the two cell populations, suggesting that they recognize different antigens. Under steady-state conditions, mTregs were nonmigratory and relatively unresponsive; however, in inflamed skin from psoriasis patients, mTregs expanded, were highly proliferative, and produced low levels of IL-17. Taken together, these results identify a subset of Tregs that stably resides in human skin and suggest that these cells are qualitatively defective in inflammatory skin disease.
Resumo:
The skin of an adult human contains about 20 billion memory T cells. Epithelial barrier tissues are infiltrated by a combination of resident and recirculating T cells in mice, but the relative proportions and functional activities of resident versus recirculating T cells have not been evaluated in human skin. We discriminated resident from recirculating T cells in human-engrafted mice and lymphoma patients using alemtuzumab, a medication that depletes recirculating T cells from skin, and then analyzed these T cell populations in healthy human skin. All nonrecirculating resident memory T cells (TRM) expressed CD69, but most were CD4(+), CD103(-), and located in the dermis, in contrast to studies in mice. Both CD4(+) and CD8(+) CD103(+) TRM were enriched in the epidermis, had potent effector functions, and had a limited proliferative capacity compared to CD103(-) TRM. TRM of both types had more potent effector functions than recirculating T cells. We observed two distinct populations of recirculating T cells, CCR7(+)/L-selectin(+) central memory T cells (TCM) and CCR7(+)/L-selectin(-) T cells, which we term migratory memory T cells (TMM). Circulating skin-tropic TMM were intermediate in cytokine production between TCM and effector memory T cells. In patients with cutaneous T cell lymphoma, malignant TCM and TMM induced distinct inflammatory skin lesions, and TMM were depleted more slowly from skin after alemtuzumab, suggesting that TMM may recirculate more slowly. In summary, human skin is protected by four functionally distinct populations of T cells, two resident and two recirculating, with differing territories of migration and distinct functional activities.
Resumo:
Visual imagery – similar to visual perception – activates feature-specific and category-specific visual areas. This is frequently observed in experiments where the instruction is to imagine stimuli that have been shown immediately before the imagery task. Hence, feature-specific activation could be related to the short-term memory retrieval of previously presented sensory information. Here, we investigated mental imagery of stimuli that subjects had not seen before, eliminating the effects of short-term memory. We recorded brain activation using fMRI while subjects performed a behaviourally controlled guided imagery task in predefined retinotopic coordinates to optimize sensitivity in early visual areas. Whole brain analyses revealed activation in a parieto-frontal network and lateral–occipital cortex. Region of interest (ROI) based analyses showed activation in left hMT/V5+. Granger causality mapping taking left hMT/V5+ as source revealed an imagery-specific directed influence from the left inferior parietal lobule (IPL). Interestingly, we observed a negative BOLD response in V1–3 during imagery, modulated by the retinotopic location of the imagined motion trace. Our results indicate that rule-based motion imagery can activate higher-order visual areas involved in motion perception, with a role for top-down directed influences originating in IPL. Lower-order visual areas (V1, V2 and V3) were down-regulated during this type of imagery, possibly reflecting inhibition to avoid visual input from interfering with the imagery construction. This suggests that the activation in early visual areas observed in previous studies might be related to short- or long-term memory retrieval of specific sensory experiences.
Resumo:
In the memory antisaccade task, subjects are instructed to look at an imaginary point precisely at the opposite side of a peripheral visual stimulus presented short time previously. To perform this task accurately, the visual vector, i.e., the distance between a central fixation point and the peripheral stimulus, must be inverted from one visual hemifield to the other. Recent data in humans and monkeys suggest that the posterior parietal cortex (PPC) might be critically involved in the process of visual vector inversion. In the present study, we investigated the temporal dynamics of visual vector inversion in the human PPC by using transcranial magnetic stimulation (TMS). In six healthy subjects, single pulse TMS was applied over the right PPC during a memory antisaccade task at four different time intervals: 100 ms, 217 ms, 333 ms, or 450 ms after target onset. The results indicate that for rightward antisaccades, i.e., when the visual target was presented in the left screen-half, TMS had a significant effect on saccade gain when applied 100 ms after target onset, but not later. For leftward antisaccades, i.e., when the visual target was presented in the right screen-half, a significant TMS effect on gain was found for the 333 ms and 450 ms conditions, but not for the earlier ones. This double dissociation of saccade gain suggests that the initial process of vector inversion can be disrupted 100 ms after onset of the visual stimulus and that TMS interfered with motor saccade planning based on an inversed vector signal at 333 ms and 450 ms after stimulus onset.
Resumo:
Decision-making and memory are fundamental processes for successful human behaviour. For eye movements, the frontal eye fields (FEF), the supplementary eye fields (SEF), the dorsolateral prefrontal cortex (DLPFC), the ventrolateral frontal cortex and the anterior cingulum are important for these cognitive processes. The online approach of transcranial magnetic stimulation (TMS), i.e., the application of magnetic pulses during planning and performance of saccades, allows interfering specifically with information processing of the stimulated region at a very specific time interval (chronometry of cortical processing). The paper presents studies, which showed the different roles of the FEF and DLPFC in antisaccade control. The critical time interval of DLPFC control seems to be before target onset since TMS significantly increased the percentage of antisaccade errors at that time interval. The FEF seems to be important for the triggering of correct antisaccades. Bilateral stimulation of the DLPFC could demonstrate parallel information-processing transfer in spatial working memory during memory-guided saccades.
Resumo:
Due to the constant expansion within the nanotechnology industry in the last decade, nanomaterials are omnipresent in society today. Nanotechnology-based products have numerous different applications ranging from electronic (e.g., advanced memory chips) to industrial (e.g., coatings or composites) to biomedical (e.g., drug delivery systems, diagnostics). Although these new nanomaterials can be found in many "everyday" products, their effects on the human body have still to be investigated in order to identify not only their risk, but also their potential benefits towards human health. Since the lung is commonly thought to be the main portal of entry into the human body for nanomaterials released within the environment, this review will attempt to summarise the current knowledge and understanding of how nanomaterials interact with the respiratory tract. Furthermore, the advantages and disadvantages of different experimental model systems that are commonly used to study this exposure route to the human body will be discussed.
Resumo:
The paper argues for a distinction between sensory-and conceptual-information storage in the human information-processing system. Conceptual information is characterized as meaningful and symbolic, while sensory information may exist in modality-bound form. Furthermore, it is assumed that sensory information does not contribute to conscious remembering and can be used only in data-driven process reptitions, which can be accompanied by a kind of vague or intuitive feeling. Accordingly, pure top-down and willingly controlled processing, such as free recall, should not have any access to sensory data. Empirical results from different research areas and from two experiments conducted by the authors are presented in this article to support these theoretical distinctions. The experiments were designed to separate a sensory-motor and a conceptual component in memory for two-digit numbers and two-letter items, when parts of the numbers or items were imaged or drawn on a tablet. The results of free recall and recognition are discussed in a theoretical framework which distinguishes sensory and conceptual information in memory.