10 resultados para Human chorionic gonadotropin
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
Hyperglycosylated human chorionic gonadotropin (H-hCG) is secreted by the placenta in early pregnancy. Decreased H-hCG levels have been associated with abortion in spontaneous pregnancy. We retrospectively measured H-hCG and dimeric hCG in the sera of 87 in vitro fertilization patients obtained in the 3 weeks following embryo transfer and set the results in relation to pregnancy outcome. H-hCG and dimeric hCG were correlated (r(2) = 0.89), and were significantly decreased in biochemical pregnancy (2 microg/l and 18 IU/l, respectively) compared to early pregnancy loss (22 microg/l and 331 IU/l) and ongoing pregnancy (32 microg/l and 353 IU/l). Only H-hCG tended to discriminate between these last two groups.
Resumo:
The factors that influence Leydig cell activity currently include peptides such as neuropeptide Y (NPY). In this work we investigated the ability of this compound, injected directly into the testes of adult male rats, to alter testosterone (T) release into the general circulation. At a 5μg/kg dose administered 1h prior to challenge with human chorionic gonadotropin (hCG, 1.0 U/kg, iv), NPY significantly (P<0.01) blunted the T response to this gonadotropin. The inhibitory effect of NPY was observed in animals pretreated with an antagonist to gonadotropin-releasing hormone or not, indicating that the decrease in plasma T found was most likely independent of pituitary luteinizing hormone. However, testicular levels of steroidogenic acute regulatory (STAR) protein or translocator protein (TSPO) in the Leydig cells did not exhibit consistent changes, which suggested that other mechanisms mediated the blunted T response to hCG. We therefore used autoradiography and immunohistochemistry methodologies to identify NPY receptors in the testes, and found them primarily located on blood vessels. Competition studies further identified these receptors as being Y(1), a subtype previously reported to modulate the vasoconstrictor effect of NPY. The absence of significant changes in STAR and TSPO levels, as well as the absence of Y(1) receptors on Leydig cells, suggest that NPY-induced decreases in T release is unlikely to represent a direct effect of NPY on these cells. Rather, the very high expression levels of Y(1) found in testicular vessels supports the concept that NPY may alter gonadal activity, at least in part, through local vascular impairment of gonadotropin delivery to, and/or blunted T secretion from, Leydig cells.
Resumo:
BACKGROUNDS In vitro fertilization involves high dosage gonadotropin stimulation, which apparently has some negative impact on follicular endocrine function. As chorionic gonadotropin stimulation has been shown to increase the blood-follicular permeability in animal models, this raises the question if such an effect also applies to gonadotropins in humans, possibly affecting the endocrine follicular milieu. FINDINGS Follicular fluid and serum were collected at the time of follicular aspiration in in vitro fertilisation without (Natural cycle IVF, n = 24) and with (conventional gonadotropin stimulated IVF, n = 31) gonadotropin stimulation. The concentration of the extra-ovarian hormones prolactin and cortisol were analysed by immunoassays. RESULTS Median serum prolactin and cortisol concentrations were 12.3 ng/mL and 399 nmol/L without versus 32.2 ng/mL and 623 nmol/L with gonadotropin stimulation. The corresponding concentrations in follicular fluid were 20.6 ng/mL and 445 nmol/L versus 28.8 ng/ml and 456 nmol/L for prolactin and cortisol. As a consequence, mean follicular fluid:serum ratios were significantly reduced under gonadotropin stimulation (prolactin p = 0.0138, cortisol p = 0.0001). As an enhanced blood-follicular permeability and transportation, induced by gonadotropin stimulation, would result in increased instead of decreased follicular fluid:serum ratios as found in this study, it can be assumed that this does not affect extra-ovarian protein and steroid hormones as illustrated by prolactin and cortisol. CONCLUSIONS The model of serum follicular fluid:serum ratio of hormones, produced outside the ovaries, did not reveal a gonadotropin induced increased blood-follicular transportation capacity. Therefore it can be assumed that the effect of gonadotropins on follicular endocrine function is not due to an increased ovarian permeability of extra-ovarian hormones.
Resumo:
Natural-cycle IVF has been suggested as an alternative IVF treatment. However, efficacy is limited due to high premature ovulation rates, resulting in low transfer rates. This study investigates whether low dosages of clomiphene citrate reduce premature ovulation rate and increase transfer rate. Of 112 women included (aged 35.2 ± 4.5 years) 108 underwent one natural-cycle IVF cycle with human chorionic gonadotrophin (HCG) to induce ovulation and 103 underwent one natural-cycle IVF cycle with 25 mg/day clomiphene from about day 7 until HCG administration. Before retrieval, 1.2 monitoring consultations per cycle were required. Clomiphene reduced premature ovulation rate, from 27.8% without to 6.8% with clomiphene (P < 0.001) and increased transfer rate from 39.8% to 54.4% (P = 0.039). Clinical pregnancy rates without and with clomiphene were 27.9% versus 25.0% per transfer and 11.1% versus 13.6% per initiated cycle. Use of clomiphene resulted in mild hot flushes and headache in 5% of patients. Nausea and persisting ovarian cyst formation was not observed. In conclusion, clomiphene citrate led to very few side effects, required 1.2 monitoring consultations, significantly reduced premature ovulation rate and significantly increased transfer rate per initiated cycle, an effect which was not age dependent.
Resumo:
Triple-negative breast cancer does not express estrogen and progesterone receptors, and no overexpression/amplification of the HER2-neu gene occurs. Therefore, this subtype of breast cancer lacks the benefits of specific therapies that target these receptors. Today chemotherapy is the only systematic therapy for patients with triple-negative breast cancer. About 50% to 64% of human breast cancers express receptors for gonadotropin-releasing hormone (GnRH), which might be used as a target. New targeted therapies are warranted. Recently, we showed that antagonists of gonadotropin-releasing hormone type II (GnRH-II) induce apoptosis in human endometrial and ovarian cancer cells in vitro and in vivo. This was mediated through activation of stress-induced mitogen-activated protein kinases (MAPKs) p38 and c-Jun N-terminal kinase (JNK), followed by activation of proapoptotic protein Bax, loss of mitochondrial membrane potential, and activation of caspase-3. In the present study, we analyzed whether GnRH-II antagonists induce apoptosis in MCF-7 and triple-negative MDA-MB-231 human breast cancer cells that express GnRH receptors. In addition, we ascertained whether knockdown of GnRH-I receptor expression affects GnRH-II antagonist-induced apoptosis and apoptotic signaling.
Resumo:
The objective of the study was to determine the feasibility of generating a biodegradable, stem cell-loaded osteogenic composite graft from human placenta. Initially, a scaffold from human chorion membrane was produced. Human placenta mesenchymal stem cells (MSCs) derived from either first-trimester chorionic villi or term chorion membrane were differentiated osteogenically on this scaffold. Outgrowth, adherence, and osteogenic differentiation of cells were assessed by immunohistochemistry (IHC), scanning electron microscopy, protein expression, and real-time polymerase chain reaction (RT-PCR). Our results showed that a cell-free extracellular matrix scaffold can be generated from human chorion. Seeded MSCs densely adhered to that scaffold and were osteogenically differentiated. Calcium and alkaline phosphatase were detected in the cell-scaffold constructs as a proof of mineralization and findings were confirmed by IHC and RT-PCR results. This study shows for the first time that generation of an osteogenic composite graft using placental tissue is feasible. It might allow therapeutic application of autologous or allogeneic grafts in congenital skeletal defects by means of a composite graft.
Resumo:
The ATP-binding cassette transporter A1 (ABCA1) mediates the transport of cholesterol, phospholipids, and other lipophilic molecules across cellular membranes. Recent data provide evidence that ABCA1 plays an important role in placental function but the exact cellular sites of ABCA1 action in the placenta remain controversial. To clarify this issue, we analyzed the cellular and subcellular localization of ABCA1 with immunocytochemistry, immunofluorescence and subsequent confocal or immunofluorescence microscopy in different types of isolated primary placenta cells: cytotrophoblast cells, amnion epithelial cells, villous macrophages (Hofbauer cells), and mesenchymal cells isolated from chorionic membrane and placental villi. After 12 h of cultivation, primary cytotrophoblast cells showed intensive membrane and cytoplasmic staining for ABCA1. After 24 h, with progressive syncytium formation, ABCA1 staining intensity was markedly reduced and ABCA1 was dispersed in the cytoplasm of the forming syncytial layer. In amnion epithelial cells, placental macrophages and mesenchymal cells, ABCA1 was predominantly localized at the cell membrane and cytoplasmic compartments partially corresponding to the endoplasmic reticulum. In these cell types, the ABCA1 staining intensity was not dependent on the cultivation time. In conclusion, ABCA1 shows marked expression levels in diverse placental cell types. The multitopic localization of ABCA1 in diverse human placental cells not all directly involved in materno-fetal exchange suggests that this protein may not only participate in transplacental lipid transport but could have additional regulatory functions.
Resumo:
Endocrine resistance in breast cancer remains a major clinical problem and is caused by crosstalk mechanisms of growth factor receptor cascades, such as the erbB and PI3K/AKT pathways. The possibilities a single breast cancer cell has to achieve resistance are manifold. We developed a model of 4-hydroxy-tamoxifen (OHT)‑resistant human breast cancer cell lines and compared their different expression patterns, activation of growth factor receptor pathways and compared cells by genomic hybridization (CGH). We also tested a panel of selective inhibitors of the erbB and AKT/mTOR pathways to overcome OHT resistance. OHT‑resistant MCF-7-TR and T47D-TR cells showed increased expression of HER2 and activation of AKT. T47D-TR cells showed EGFR expression and activated MAPK (ERK-1/2), whereas in resistant MCF-7-TR cells activated AKT was due to loss of CTMP expression. CGH analyses revealed remarkable aberrations in resistant sublines, which were predominantly depletions. Gefitinib inhibited erbB signalling and restored OHT sensitivity in T47D-TR cells. The AKT inhibitor perifosine restored OHT sensitivity in MCF-7-TR cells. All cell lines showed expression of receptors for gonadotropin-releasing hormone (GnRH) I and II, and analogs of GnRH-I/II restored OHT sensitivity in both resistant cell lines by inhibition of erbB and AKT signalling. In conclusion, mechanisms to escape endocrine treatment in breast cancer share similarities in expression profiling but are based on substantially different genetic aberrations. Evaluation of activated mediators of growth factor receptor cascades is helpful to predict response to specific inhibitors. Expression of GnRH-I/II receptors provides multi-targeting treatment strategies.