14 resultados para Human Movement
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
In the present study we examined the interrelation of everyday life handedness and hand preference in basketball, as an area of expertise that requires individuals being proficient with both their nondominant and dominant hand. A secondary aim was to elucidate the link between basketball-specific practice, hand preference in basketball and everyday life handedness. Therefore, 176 expert basketball players self-reported their hand preference for activities of daily living and for basketball-specific behavior as well as details about their basketball-specific history via questionnaire. We found that compared to the general population the one-hand bias was significantly reduced for both everyday life and basketball-specific hand preference (i.e., a higher prevalence of mixed-handed individuals), and that both concepts were significantly related. Moreover, only preference scores for lay-up and dribbling skills were significantly related to measures of basketball-specific practice. Consequently, training-induced modulations of lateral preference seem to be very specific to only a few basketball-specific skills, and do not generalize to other skills within the domain of basketball nor do they extend into everyday life handedness. The results are discussed in terms of their relevance regarding theories of handedness and their practical implications for the sport of basketball.
Resumo:
Both theoretically and empirically there is a continuous interest in understanding the specific relation between cognitive and motor development in childhood. In the present longitudinal study including three measurement points, this relation was targeted. At the beginning of the study, the participating children were 5-6-year-olds. By assessing participants' fine motor skills, their executive functioning, and their non-verbal intelligence, their cross-sectional and cross-lagged interrelations were examined. Additionally, performance in these three areas was used to predict early school achievement (in terms of mathematics, reading, and spelling) at the end of participants' first grade. Correlational analyses and structural equation modeling revealed that fine motor skills, non-verbal intelligence and executive functioning were significantly interrelated. Both fine motor skills and intelligence had significant links to later school achievement. However, when executive functioning was additionally included into the prediction of early academic achievement, fine motor skills and non-verbal intelligence were no longer significantly associated with later school performance suggesting that executive functioning plays an important role for the motor-cognitive performance link.
Resumo:
This study explored the effects of unstable shoe design on oxygen consumption. Methods. Oxygen consumption (VO2) and heart rate (HR) were measured in 16 individuals while barefoot, wearing unstable shoes (Masai Barefoot Technology) and wearing conventional sport shoes while standing and walking on a treadmill and for 5 individuals while walking around a 400 m track. Results. When wearing the MBT shoes, a significant (p < 0.01) increase of 9.3 ± 5.2% in VO2 was measured while standing quietly for 6 min. No differences in VO2 and HR were observed between the MBT shoes or weight-adjusted conventional shoes (to match the weight of the MBT shoes) while walking on a treadmill. However, significant increases (p < 0.01) in VO2 (4.4 ± 8.2%) and HR (3.6 ± 7.3%) were observed for the MBT shoes compared with being barefoot. No significant differences in VO2 and HR were recorded while walking around a 400 m track either with MBT shoes, weight-adjusted conventional shoes or barefoot. Nonetheless, a comparison of the MBT shoes with barefoot revealed a tendency for VO2 to be higher when wearing the MBT shoes (7.1 ± 6.5%, p < 0.1) although HR was not significantly affected. Conclusions. The unstable shoe design predominantly effects oxygen consumption while standing, most likely due to increased muscle activity of the lower extremities.
Resumo:
The ability of the brain to adjust to changing environments and to recover from damage rests on its remarkable capacity to adapt through plastic changes of underlying neural networks. We show here with an eye movement paradigm that a lifetime of plastic changes can be extended to several hours by repeated applications of theta burst transcranial magnetic stimulation to the frontal eye field of the human cortex. The results suggest that repeated application of the same stimulation protocol consolidates short-lived plasticity into long-lasting changes.
Resumo:
Narcolepsy is usually an idiopathic disorder, often with a genetic predisposition. Symptomatic cases have been described repeatedly, often as a consequence of hypothalamic lesions. Conversely, REM (rapid eye movement) sleep behaviour disorder (RBD) is usually a secondary disorder, often due to degenerative brain stem disorders or narcolepsy. The case of a hitherto healthy man is presented, who simultaneously developed narcolepsy and RBD as the result of an acute focal inflammatory lesion in the dorsomedial pontine tegmentum in the presence of normal cerebrospinal fluid hypocretin-1 levels and in the absence of human lymphocyte antigen haplotypes typically associated with narcolepsy and RBD (DQB1*0602, DQB1*05). This first observation of symptomatic narcolepsy with RBD underlines the importance of the mediotegmental pontine area in the pathophysiology of both disorders, even in the absence of a detectable hypocretin deficiency and a genetic predisposition.
Resumo:
BACKGROUND: We examined whether vascular smooth muscle (VSMC) or endothelial cell (EC) migration from internal mammary artery (MA) differed from VSMC or EC migration from saphenous vein (SV). METHODS AND RESULTS: Migration to PDGF-BB (1-10 ng/ml) was lower in VSMC from MA than SV; however, attachment, movement without chemokine, and chemokinesis were identical. Unlike VSMC, migration of EC was similar in response to several mediators. Expression of PDGF receptor-beta was lower in VSMC from MA than SV, while alpha-receptor expression was higher. PDGF-BB-induced RhoA activity was lower in MA than SV, while basal activity was identical. Rosuvastatin and hydroxyfasudil impaired PDGF-BB-induced migration of VSMC from MA and SV. Mevalonate and geranylgeranylpyrophosphate rescued inhibition by rosuvastatin. PDGF-BB induced less stress fiber formation in VSMC from MA than SV. A dominant negative RhoA mutant inhibited stress fiber formation to PDGF-BB, while a constitutively active mutant resulted in maximal stress fiber formation in MA and SV. Rosuvastatin and hydroxyfasudil impaired PDGF-BB-induced stress fiber formation in MA and SV. CONCLUSIONS: VSMC migration to PDGF-BB is lower in MA than SV, which is at least in part related to lower activity of the Rho/ROCK pathway.
Resumo:
Larger body parts are somatotopically represented in the primary motor cortex (M1), while smaller body parts, such as the fingers, have partially overlapping representations. The principles that govern the overlapping organization of M1 remain unclear. We used transcranial magnetic stimulation (TMS) to examine the cortical encoding of thumb movements in M1 of healthy humans. We performed M1 mapping of the probability of inducing a thumb movement in a particular direction and used low intensity TMS to disturb a voluntary thumb movement in the same direction during a reaction time task. With both techniques we found spatially segregated representations of the direction of TMS-induced thumb movements, thumb flexion and extension being best separated. Furthermore, the cortical regions corresponding to activation of a thumb muscle differ, depending on whether the muscle functions as agonist or as antagonist for flexion or extension. In addition, we found in the reaction time experiment that the direction of a movement is processed in M1 before the muscles participating in it are activated. It thus appears that one of the organizing principles for the human corticospinal motor system is based on a spatially segregated representation of movement directions and that the representation of individual somatic structures, such as the hand muscles, overlap.
Resumo:
Cellular directional migration in an electric field (galvanotaxis) is one of the mechanisms guiding cell movement in embryogenesis and in skin epidermal repair. The epithelial sodium channel (ENaC), in addition to its function of regulating sodium transport in kidney, has recently been found to modulate cell locomotory speed. Here we tested whether ENaC has an additional function of mediating the directional migration of galvanotaxis in keratinocytes. Genetic depletion of ENaC completely blocks only galvanotaxis and does not decrease migration speed. Overexpression of ENaC is sufficient to drive galvanotaxis in otherwise unresponsive cells. Pharmacologic blockade or maintenance of the open state of ENaC also decreases or increases, respectively, galvanotaxis, suggesting that the channel open state is responsible for the response. Stable lamellipodial extensions formed at the cathodal sides of wild-type cells at the start of galvanotaxis; these were absent in the ENaC knockout keratinocytes, suggesting that ENaC mediates galvanotaxis by generating stable lamellipodia that steer cell migration. We provide evidence that ENaC is required for directional migration of keratinocytes in an electric field, supporting a role for ENaC in skin wound healing.
Resumo:
High-resolution seismic profiles and sediment cores from Lake Ledro combined with soil and riverbed samples from the lake's catchment area are used to assess the recurrence of natural hazards (earthquakes and flood events) in the southern Italian Alps during the Holocene. Two well-developed deltas and a flat central basin are identified on seismic profiles in Lake Ledro. Lake sediments have been finely laminated in the basin since 9000 cal. yr BP and frequently interrupted by two types of sedimentary events (SEs): light-coloured massive layers and dark-coloured graded beds. Optical analysis (quantitative organic petrography) of the organic matter present in soil, riverbed and lacustrine samples together with lake sediment bulk density and grain-size analysis illustrate that light-coloured layers consist of a mixture of lacustrine sediments and mainly contain algal particles similar to the ones observed in background sediments. Light-coloured layers thicker than 1.5 cm in the main basin of Lake Ledro are synchronous to numerous coeval mass-wasting deposits remoulding the slopes of the basin. They are interpreted as subaquatic mass-movements triggered by historical and pre-historical regional earthquakes dated to AD2005, AD1891, AD1045 and 1260, 2545, 2595, 3350, 3815, 4740, 7190, 9185 and 11 495 cal. yr BP. Darkcoloured SEs develop high-amplitude reflections in front of the deltas and in the deep central basin. These beds are mainly made of terrestrial organic matter (soils and lignocellulosic debris) and are interpreted as resulting from intense hyperpycnal flood event. Mapping and quantifying the amount of soil material accumulated in the Holocene hyperpycnal flood deposits of the sequence allow estimating that the equivalent soil thickness eroded over the catchment area reached up to 5mm during the largest Holocene flood events. Such significant soil erosion is interpreted as resulting from the combination of heavy rainfall and snowmelt. The recurrence of flash flood events during the Holocene was, however, not high enough to affect pedogenesis processes and highlight several wet regional periods during the Holocene. The Holocene period is divided into four phases of environmental evolution. Over the first half of the Holocene, a progressive stabilization of the soils present through the catchment of Lake Ledro was associated with a progressive reforestation of the area and only interrupted during the wet 8.2 event when the soil destabilization was particularly important. Lower soil erosion was recorded during the mid-Holocene climatic optimum (8000-4200 cal. yr BP) and associated with higher algal production. Between 4200 and 3100 cal. yr BP, both wetter climate and human activities within the drainage basin drastically increased soil erosion rates. Finally, from 3100 cal. yr BP to the present-day, data suggest increasing and changing human land use.
Resumo:
Social interaction is a core aspect of human life that affects individuals’ physical and mental health. Social interaction usually leads to mutual engagement in diverse areas of mental, emotional, physiological and physical activity involving both interacting persons and subsequently impacting the outcome of interactions. A common approach to the analysis of social interaction is the study of the verbal content transmitted between sender and receiver. However, additional important processes and dynamics are occurring in other domains too, for example in the area of nonverbal behaviour: In a series of studies, we have looked at nonverbal synchrony – the coordination of two persons’ movement patterns – and it‘s association with relationship quality and with the outcome of interactions. Using a computer-based algorithm (Motion Energy Analysis, MEA: Ramseyer & Tschacher, 2011), which automatically quantifies a person‘s body-movement, we were able to objectively calculate nonverbal synchrony in a large number of dyads interacting in various settings. In a first step, we showed that the phenomenon of nonverbal synchrony exists at a level that is significantly higher than expected by chance. In a second step, we ascertained that across different settings – including patient-therapist dyads and healthy dyads – more synchronized movement was associated with better relationship quality and better interactional outcomes. The quality of a relationship is thus embodied by the synchronized movement patterns emerging between partners. Our studies suggest that embodied cognition is a valuable approach to research in social interaction, providing important clues for an improved understanding of interaction dynamics.
Resumo:
BACKGROUND: Co-speech gestures are omnipresent and a crucial element of human interaction by facilitating language comprehension. However, it is unclear whether gestures also support language comprehension in aphasic patients. Using visual exploration behavior analysis, the present study aimed to investigate the influence of congruence between speech and co-speech gestures on comprehension in terms of accuracy in a decision task. METHOD: Twenty aphasic patients and 30 healthy controls watched videos in which speech was either combined with meaningless (baseline condition), congruent, or incongruent gestures. Comprehension was assessed with a decision task, while remote eye-tracking allowed analysis of visual exploration. RESULTS: In aphasic patients, the incongruent condition resulted in a significant decrease of accuracy, while the congruent condition led to a significant increase in accuracy compared to baseline accuracy. In the control group, the incongruent condition resulted in a decrease in accuracy, while the congruent condition did not significantly increase the accuracy. Visual exploration analysis showed that patients fixated significantly less on the face and tended to fixate more on the gesturing hands compared to controls. CONCLUSION: Co-speech gestures play an important role for aphasic patients as they modulate comprehension. Incongruent gestures evoke significant interference and deteriorate patients' comprehension. In contrast, congruent gestures enhance comprehension in aphasic patients, which might be valuable for clinical and therapeutic purposes.