28 resultados para Human Epidermal Keratinocytes
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
To assess human epidermal growth factor receptor-2 (HER2)-status in gastric cancer and matched lymph node metastases by immunohistochemistry (IHC) and chromogenic in situ hybridization (CISH).
Resumo:
Meprins ? and ?, a subgroup of zinc metalloproteinases belonging to the astacin family, are known to cleave components of the extracellular matrix, either during physiological remodeling or in pathological situations. In this study we present a new role for meprins in matrix assembly, namely the proteolytic processing of procollagens. Both meprins ? and ? release the N- and C-propeptides from procollagen III, with such processing events being critical steps in collagen fibril formation. In addition, both meprins cleave procollagen III at exactly the same site as the procollagen C-proteinases, including bone morphogenetic protein-1 (BMP-1) and other members of the tolloid proteinase family. Indeed, cleavage of procollagen III by meprins is more efficient than by BMP-1. In addition, unlike BMP-1, whose activity is stimulated by procollagen C-proteinase enhancer proteins (PCPEs), the activity of meprins on procollagen III is diminished by PCPE-1. Finally, following our earlier observations of meprin expression by human epidermal keratinocytes, meprin ? is also shown to be expressed by human dermal fibroblasts. In the dermis of fibrotic skin (keloids), expression of meprin ? increases and meprin ? begins to be detected. Our study suggests that meprins could be important players in several remodeling processes involving collagen fiber deposition.
Resumo:
The proto-oncogene c-Myc is involved in early neoplastic transformations. Two consensus Lef/Tcf binding elements (TBE) were found to be prerequisite for transcriptional transactivation by the armadillo proteins beta-catenin and plakoglobin (PG) together with Tcf4 in human neoplastic cells. In epidermal keratinocytes, c-Myc was reported to be repressed by Lef-1 and PG. Using reporter gene assays, here we demonstrate that deletion of the two consensus TBE fails to abrogate transcriptional regulation by Lef-1/PG in wildtype and beta-catenin-/- keratinocytes, while it reduces transcription in pre-neoplastic PG-/- keratinocytes. We identified a TBE sequence variant downstream of the major transcriptional initiation site that binds Lef-1 in vitro and in vivo, and its mutation compromised transcriptional regulation by Lef-1/PG. Collectively, this study demonstrates that the two consensus TBE's reported in neoplastic cells are dispensable for c-Myc regulation in normal keratinocytes, which instead use a novel TBE sequence variant. This unprecedented finding may have important implications for armadillo target genes involved in carcinogenesis.
Resumo:
BACKGROUND: Acne inversa is a chronic inflammatory disorder of apocrine gland-bearing skin. The role of the innate immune system in the pathogenesis of the disease is controversial. OBJECTIVES: We investigated the expression of antimicrobial peptide/proteins in acne inversa. METHODS: Tissue samples were obtained from patients with acne inversa and compared with normal-appearing skin. The expression of psoriasin and human beta-defensin (hBD)-2 on messenger RNA and protein level was analyzed. RESULTS: Both messenger RNA and protein levels of psoriasin and hBD-2 were significantly increased in acne inversa. Macrophages expressing hBD-2 were found in the dermis. LIMITATIONS: Small sample size is a limitation. CONCLUSIONS: Antimicrobial peptide/proteins are overexpressed in acne inversa lesions as compared with normal-appearing skin. The site of the major expression depends on the particular antimicrobial peptide/protein. Psoriasin is overexpressed in epidermal keratinocytes whereas hBD-2 is produced mainly by dermal macrophages, leaving a relative deficiency of hBD-2 in the epidermis of acne inversa lesions.
Resumo:
Studies using cultured cells allow one to dissect complex cellular mechanisms in greater detail than when studying living organisms alone. However, before cultured cells can deliver meaningful results they must accurately represent the in vivo situation. Over the last three to four decades considerable effort has been devoted to the development of culture media which improve in vitro growth and modeling accuracy. In contrast to earlier large-scale, non-specific screening of factors, in recent years the development of such media has relied increasingly on a deeper understanding of the cell's biology and the selection of growth factors to specifically activate known biological processes. These new media now enable equal or better cell isolation and growth, using significantly simpler and less labor-intensive methodologies. Here we describe a simple method to isolate and cultivate epidermal keratinocytes from embryonic or neonatal skin on uncoated plastic using a medium specifically designed to retain epidermal keratinocyte progenitors in an undifferentiated state for improved isolation and proliferation and an alternative medium to support terminal differentiation.
Resumo:
Sarco(endo)plasmic reticulum Ca2+-ATPase isoform 2 (SERCA2) pumps belong to the family of Ca2+-ATPases responsible for the maintenance of calcium in the endoplasmic reticulum. In epidermal keratinocytes, SERCA2-controlled calcium stores are involved in cell cycle exit and onset of terminal differentiation. Hence, their dysfunction was thought to provoke impaired keratinocyte cohesion and hampered terminal differentiation. Here, we assessed cultured keratinocytes and skin biopsies from a canine family with an inherited skin blistering disorder. Cells from lesional and phenotypically normal areas of one of these dogs revealed affected calcium homeostasis due to depleted SERCA2-gated stores. In phenotypically normal patient cells, this defect compromised upregulation of p21(WAF1) and delayed the exit from the cell cycle. Despite this abnormality it failed to impede the terminal differentiation process in the long term but instead coincided with enhanced apoptosis and appearance of chronic wounds, suggestive of secondary mutations. Collectively, these findings provide the first survey on phenotypic consequences of depleted SERCA-gated stores for epidermal homeostasis that explain how depleted SERCA2 calcium stores provoke focal lesions rather than generalized dermatoses, a phenotype highly reminiscent of the human genodermatosis Darier disease.
Resumo:
The skin irritant polyyne falcarinol (panaxynol, carotatoxin) is found in carrots, parsley, celery, and in the medicinal plant Panax ginseng. In our ongoing search for new cannabinoid (CB) receptor ligands we have isolated falcarinol from the endemic Sardinian plant Seseli praecox. We show that falcarinol exhibits binding affinity to both human CB receptors but selectively alkylates the anandamide binding site in the CB(1) receptor (K(i)=594nM), acting as covalent inverse agonist in CB(1) receptor-transfected CHO cells. Given the inherent instability of purified falcarinol we repeatedly isolated this compound for biological characterization and one new polyyne was characterized. In human HaCaT keratinocytes falcarinol increased the expression of the pro-allergic chemokines IL-8 and CCL2/MCP-1 in a CB(1) receptor-dependent manner. Moreover, falcarinol inhibited the effects of anandamide on TNF-alpha stimulated keratinocytes. In vivo, falcarinol strongly aggravated histamine-induced oedema reactions in skin prick tests. Both effects were also obtained with the CB(1) receptor inverse agonist rimonabant, thus indicating the potential role of the CB(1) receptor in skin immunopharmacology. Our data suggest anti-allergic effects of anandamide and that falcarinol-associated dermatitis is due to antagonism of the CB(1) receptor in keratinocytes, leading to increased chemokine expression and aggravation of histamine action.
Resumo:
Breast cancer occurring in women before the age of menopause continues to be a major medical and psychological challenge. Endocrine therapy has emerged as the mainstay of adjuvant treatment for women with estrogen receptor-positive tumours. Although the suppression of ovarian function (by oophorectomy, irradiation of the ovaries or gonadotropin releasing factor analogues) is effective as adjuvant therapy if used alone, its value has not been proven after chemotherapy. This is presumably because of the frequent occurrence of chemotherapy-induced amenorrhoea. Tamoxifen reduces the risk of recurrence by approximately 40%, irrespective of age and the ovarian production of estrogens. The worth of ovarian function suppression in combination with tamoxifen is unproven and is being investigated in an intergroup randomised clinical trial (SOFT [Suppression of Ovarian Function Trial]). Aromatase inhibitors are more effective than tamoxifen in postmenopausal women but are only being investigated in younger patients. The use of chemotherapies is identical in younger and older patients; however, at present the efficacy of chemotherapy in addition to ovarian function suppression plus tamoxifen is unknown in premenopausal patients with endocrine responsive disease. 'Targeted' therapies such as monoclonal antibodies to human epidermal growth factor receptor (HER)-2, HER1 and vascular endothelial growth factor, 'small molecule' inhibitors of tyrosine kinases and breast cancer vaccines are rapidly emerging. Their use depends on the function of the targeted pathways and is presently limited to clinical trials. Premenopausal patients are best treated in the framework of a clinical trial.
Resumo:
The assessment of ERa, PgR and HER2 status is routinely performed today to determine the endocrine responsiveness of breast cancer samples. Such determination is usually accomplished by means of immunohistochemistry and in case of HER2 amplification by means of fluorescent in situ hybridization (FISH). The analysis of these markers can be improved by simultaneous measurements using quantitative real-time PCR (Qrt-PCR). In this study we compared Qrt-PCR results for the assessment of mRNA levels of ERa, PgR, and the members of the human epidermal growth factor receptor family, HER1, HER2, HER3 and HER4. The results were obtained in two independent laboratories using two different methods, SYBR Green I and TaqMan probes, and different primers. By linear regression we demonstrated a good concordance for all six markers. The quantitative mRNA expression levels of ERa, PgR and HER2 also strongly correlated with the respective quantitative protein expression levels prospectively detected by EIA in both laboratories. In addition, HER2 mRNA expression levels correlated well with gene amplification detected by FISH in the same biopsies. Our results indicate that both Qrt-PCR methods were robust and sensitive tools for routine diagnostics and consistent with standard methodologies. The developed simultaneous assessment of several biomarkers is fast and labor effective and allows optimization of the clinical decision-making process in breast cancer tissue and/or core biopsies.
Resumo:
BACKGROUND Psoriasis is a chronic inflammatory skin disease and various stress factors mediate inflammation. Heat shock protein (HSP) 90 plays an important role in cell survival; cytokine signaling, such as interleukin-17 receptor signaling; and immune responses. OBJECTIVE We sought to elucidate protein expression and distribution of HSP90 in psoriasis. METHODS HSP90 expression and its cellular source were analyzed on normal-appearing, nonlesional, lesional, and ustekinumab-treated psoriatic skin using immunohistochemistry and double immunofluorescence. RESULTS HSP90α, the inducible isoform of HSP90, was significantly up-regulated in epidermal keratinocytes and mast cells of lesional skin and down-regulated after ustekinumab therapy. LIMITATIONS There was a limited sample size. CONCLUSIONS HSP90 from keratinocytes and mast cells is a key regulator of psoriatic inflammation and HSP90 inhibitors may represent a novel therapeutic approach to the disease.
Resumo:
Cellular directional migration in an electric field (galvanotaxis) is one of the mechanisms guiding cell movement in embryogenesis and in skin epidermal repair. The epithelial sodium channel (ENaC), in addition to its function of regulating sodium transport in kidney, has recently been found to modulate cell locomotory speed. Here we tested whether ENaC has an additional function of mediating the directional migration of galvanotaxis in keratinocytes. Genetic depletion of ENaC completely blocks only galvanotaxis and does not decrease migration speed. Overexpression of ENaC is sufficient to drive galvanotaxis in otherwise unresponsive cells. Pharmacologic blockade or maintenance of the open state of ENaC also decreases or increases, respectively, galvanotaxis, suggesting that the channel open state is responsible for the response. Stable lamellipodial extensions formed at the cathodal sides of wild-type cells at the start of galvanotaxis; these were absent in the ENaC knockout keratinocytes, suggesting that ENaC mediates galvanotaxis by generating stable lamellipodia that steer cell migration. We provide evidence that ENaC is required for directional migration of keratinocytes in an electric field, supporting a role for ENaC in skin wound healing.
Resumo:
HP802-247 is a new-generation, allogeneic tissue engineering product consisting of growth-arrested, human keratinocytes (K) and fibroblasts (F) delivered in a fibrin matrix by a spray device.
Resumo:
In skin, vitamin E acts as the predominant lipophilic antioxidant with a protective function against irradiation and oxidative stress. In addition to that, vitamin E can also modulate signal transduction and gene expression. To study whether the four natural tocopherol analogues (alpha-, beta-, gamma-, delta-tocopherol) can influence transcriptional activity by modulating the activity of nuclear receptors, a human keratinocytes cell line (NCTC 2544) was transfected with plasmids containing the luciferase reporter gene under control by direct repeat elements (DR1-DR4), representing binding sites for four different classes of nuclear receptors. In this model, the tocopherols positively modulated only the reporter construct containing a consensus element for peroxisome proliferator-activated receptors (PPARs). The induction was strongest with gamma-tocopherol and was most likely the direct consequence of stimulation of PPARgamma protein expression in keratinocytes. Vitamin E treatment also led to increased expression of a known PPARgamma target gene involved in terminal keratinocytes differentiation, the transglutaminase-1.
Resumo:
Epidermal growth factor (EGF) has widespread growth effects, and in some tissues proliferation is associated with the nuclear localization of EGF and epidermal growth factor receptor (EGFR). In the thyroid, EGF promotes growth but differs from thyrotropin (TSH) in inhibiting rather than stimulating functional parameters. We have therefore studied the occurrence and cellular distribution of EGF and EGFR in normal thyroid, in Graves' disease, where growth is mediated through the thyrotropin receptor (TSHR), and in a variety of human thyroid tumors. In the normal gland the staining was variable, but largely cytoplasmic, for both EGF and EGFR. In Graves' disease there was strong cytoplasmic staining for both EGF and EGFR, with frequent positive nuclei. Nuclear positivity for EGF and particularly for EGFR was also a feature of both follicular adenomas and follicular carcinomas. Interestingly, nuclear staining was almost absent in papillary carcinomas. These findings document for the first time the presence of nuclear EGF and EGFR in thyroid. Their predominant occurrence in tissues with increased growth (Graves' disease, follicular adenoma, and carcinoma) may indicate that nuclear EGF and EGFR play a role in growth regulation in these conditions. The absence of nuclear EGF and EGFR in papillary carcinomas would suggest that the role played by EGF in growth control differs between papillary carcinoma and follicular adenomas/carcinomas of the thyroid.
Resumo:
The homeodomain-only protein (HOP) contains an atypical homeodomain which is unable to bind to DNA due to mutations in residues important for DNA binding. Recently, HOP was reported to regulate proliferation/differentiation homeostasis in different cell types. In the present study, we performed transcriptional profiling of cultured primary human keratinocytes and noted a robust induction of HOP upon calcium-induced cell differentiation. Immunohistochemistry of human skin localized HOP to the granular layer in the epidermis. Overexpression of HOP using a lentiviral vector up-regulated FLG and LOR expression during keratinocyte differentiation. Conversely, decreasing HOP expression using small interfering RNA markedly reduced the calcium-induced expression of late markers of differentiation in vitro, with the most prominent effect on profilaggrin (FLG) mRNA. Moreover, mRNA levels of profilaggrin and loricrin were downregulated in the epidermis of HOP knockout mice. Analysis of skin disorders revealed altered HOP expression in lichen planus, psoriasis and squamous cell carcinoma (SCC). Our data indicate that HOP is a novel modulator of late terminal differentiation in keratinocytes.