16 resultados para Hoyt, Jesse.
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
We have investigated the nanoscale switching properties of strain-engineered BiFeO(3) thin films deposited on LaAlO(3) substrates using a combination of scanning probe techniques. Polarized Raman spectral analysis indicates that the nearly tetragonal films have monoclinic (Cc) rather than P4mm tetragonal symmetry. Through local switching-spectroscopy measurements and piezoresponse force microscopy, we provide clear evidence of ferroelectric switching of the tetragonal phase, but the polarization direction, and therefore its switching, deviates strongly from the expected (001) tetragonal axis. We also demonstrate a large and reversible, electrically driven structural phase transition from the tetragonal to the rhombohedral polymorph in this material, which is promising for a plethora of applications.
Resumo:
Brain-derived neurotrophic factor (BDNF) has been implicated in the pathophysiology of psychiatric and neurological disorders and in the mechanisms of antidepressant pharmacotherapy. Psychiatric and neurological conditions have also been associated with reduced brain levels of N-acetyl-aspartate (NAA), which has been used as a putative marker of neural integrity. However, few studies have explored the relationship between BDNF polymorphisms and NAA levels directly. Here, we present data from a single-voxel proton magnetic resonance spectroscopy study of 64 individuals and explore the relationship between BDNF polymorphisms and prefrontal NAA level. Our results indicate an association between a single nucleotide polymorphism (SNP) within BDNF, known as rs1519480, and reduced NAA level (p = 0.023). NAA levels were further predicted by age and Asian ancestry. There was a significant rs1519480 × age interaction on NAA level (p = 0.031). Specifically, the effect of rs1519480 on NAA level became significant at age ⩾34.17 yr. NAA level decreased with advancing age for genotype TT (p = 0.001) but not for genotype CT (p = 0.82) or CC (p = 0.34). Additional in silico analysis of 142 post-mortem brain samples revealed an association between the same SNP and reduced BDNF mRNA expression in the prefrontal cortex. The rs1519480 SNP influences BDNF mRNA expression and has an impact on prefrontal NAA level over time. This genetic mechanism may contribute to inter-individual variation in cognitive performance seen during normal ageing, as well as contributing to the risk for developing psychiatric and neurological conditions.
Resumo:
Modern pollen samples provide an invaluable research tool for helping to interpret the quaternary fossil pollen record, allowing investigation of the relationship between pollen as the proxy and the environmental parameters such as vegetation, land-use, and climate that the pollen proxy represents. The European Modern Pollen Database (EMPD) is a new initiative within the European Pollen Database (EPD) to establish a publicly accessible repository of modern (surface sample) pollen data. This new database will complement the EPD, which at present holds only fossil sedimentary pollen data. The EMPD is freely available online to the scientific community and currently has information on almost 5,000 pollen samples from throughout the Euro-Siberian and Mediterranean regions, contributed by over 40 individuals and research groups. Here we describe how the EMPD was constructed, the various tables and their fields, problems and errors, quality controls, and continuing efforts to improve the available data.
Resumo:
Unfortunately, the list of authors contains a number of duplications, omissions and other errors in the original publication of the article. The correct list appears in this erratum.
Resumo:
In e+e− event shapes studies at LEP, two different measurements were sometimes performed: a “calorimetric” measurement using both charged and neutral particles and a “track-based” measurement using just charged particles. Whereas calorimetric measurements are infrared and collinear safe, and therefore calculable in perturbative QCD, track-based measurements necessarily depend on nonperturbative hadronization effects. On the other hand, track-based measurements typically have smaller experimental uncertainties. In this paper, we present the first calculation of the event shape “track thrust” and compare to measurements performed at ALEPH and DELPHI. This calculation is made possible through the recently developed formalism of track functions, which are nonperturbative objects describing how energetic partons fragment into charged hadrons. By incorporating track functions into soft-collinear effective theory, we calculate the distribution for track thrust with next-to-leading logarithmic resummation. Due to a partial cancellation between nonperturbative parameters, the distributions for calorimeter thrust and track thrust are remarkably similar, a feature also seen in LEP data.
Resumo:
By using observables that only depend on charged particles (tracks), one can efficiently suppress pileup contamination at the LHC. Such measurements are not infrared safe in perturbation theory, so any calculation of track-based observables must account for hadronization effects. We develop a formalism to perform these calculations in QCD, by matching partonic cross sections onto new nonperturbative objects called track functions which absorb infrared divergences. The track function Ti(x) describes the energy fraction x of a hard parton i which is converted into charged hadrons. We give a field-theoretic definition of the track function and derive its renormalization group evolution, which is in excellent agreement with the pythia parton shower. We then perform a next-to-leading order calculation of the total energy fraction of charged particles in e+e−→ hadrons. To demonstrate the implications of our framework for the LHC, we match the pythia parton shower onto a set of track functions to describe the track mass distribution in Higgs plus one jet events. We also show how to reduce smearing due to hadronization fluctuations by measuring dimensionless track-based ratios.
Resumo:
Ongoing changes in disturbance regimes are predicted to cause acute changes in ecosystem structure and function in the coming decades, but many aspects of these predictions are uncertain. A key challenge is to improve the predictability of postdisturbance biogeochemical trajectories at the ecosystem level. Ecosystem ecologists and paleoecologists have generated complementary data sets about disturbance (type, severity, frequency) and ecosystem response (net primary productivity, nutrient cycling) spanning decadal to millennial timescales. Here, we take the first steps toward a full integration of these data sets by reviewing how disturbances are reconstructed using dendrochronological and sedimentary archives and by summarizing the conceptual frameworks for carbon, nitrogen, and hydrologic responses to disturbances. Key research priorities include further development of paleoecological techniques that reconstruct both disturbances and terrestrial ecosystem dynamics. In addition, mechanistic detail from disturbance experiments, long-term observations, and chronosequences can help increase the understanding of ecosystem resilience.
Resumo:
The international orthopaedic community aims to achieve the best possible outcome for patient care by constantly modifying surgical techniques and expanding the surgeon's knowledge. These efforts require proper reflection within a setting that necessitates a higher quality standard for global orthopaedic publication. Furthermore, these techniques demand that surgeons acquire information at a rapid rate while enforcing higher standards in research performance. An international consensus exists on how to perform research and what rules should be considered when publishing a scientific paper. Despite this global agreement, in today's "Cross Check Era", too many authors do not give attention to the current standards of systematic research. Thus, the purpose of this paper is to describe these performance standards, the available choices for orthopaedic surgeons and the current learning curve for seasoned teams of researchers and orthopaedic surgeons with more than three decades of experience. These lead to provide an accessible overview of all important aspects of the topics that will significantly influence the research development as we arrive at an important globalisation era in orthopaedics and trauma-related research.
Resumo:
A protected S-acetylthio porphyrin was synthesized and attached to the Au38(2-phenylethanethiolate)24 cluster in a ligand exchange reaction. Chiral high performance liquid chromatography of the functionalized cluster yielded enantiomeric pairs of clusters probably differing in the binding site of the porphyrin. As proven by circular dichroism, the chirality was maintained. Exciton coupling between the cluster and the chromophore is observed. Zinc can be incorporated into the porphyrin attached to the cluster, as evidenced by absorption and fluorescence spectroscopy, however, the reaction is slow. Quenching of the chromophore fluorescence is observed, which can be explained by energy transfer from the porphyrin to the cluster. Transient absorption spectra of Au38(2-phenylethanethiolate)24 and the functionalized cluster probe the bleach of the gold cluster due to ground state absorption and the characteristic excited state absorption signals. Zinc incorporation does not have a pronounced effect on the photophysical behaviour. Decay times are typical for the molecular behaviour of small monolayer protected gold clusters.