53 resultados para Housing, Single family -- Environmetal aspects -- Valldemosa (Spain)
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
Glutamate transporters play important roles in the termination of excitatory neurotransmission and in providing cells throughout the body with glutamate for metabolic purposes. The high-affinity glutamate transporters EAAC1 (SLC1A1), GLT1 (SLC1A2), GLAST (SLC1A3), EAAT4 (SLC1A6), and EAAT5 (SLC1A7) mediate the cellular uptake of glutamate by the co-transport of three sodium ions (Na(+)) and one proton (H(+)), with the counter-transport of one potassium ion (K(+)). Thereby, they protect the CNS from glutamate-induced neurotoxicity. Loss of function of glutamate transporters has been implicated in the pathogenesis of several diseases, including amyotrophic lateral sclerosis and Alzheimer's disease. In addition, glutamate transporters play a role in glutamate excitotoxicity following an ischemic stroke, due to reversed glutamate transport. Besides glutamate transporters, the SLC1 family encompasses two transporters of neutral amino acids, ASCT1 (SLC1A4) and ASCT2 (SLC1A5). Both transporters facilitate electroneutral exchange of amino acids in neurons and/or cells of the peripheral tissues. Some years ago, a high resolution structure of an archaeal homologue of the SLC1 family was determined, followed by the elucidation of its structure in the presence of the substrate aspartate and the inhibitor d,l-threo-benzyloxy aspartate (d,l-TBOA). Historically, the first few known inhibitors of SLC1 transporters were based on constrained glutamate analogs which were active in the high micromolar range but often also showed off-target activity at glutamate receptors. Further development led to the discovery of l-threo-β-hydroxyaspartate derivatives, some of which effectively inhibited SLC1 transporters at nanomolar concentrations. More recently, small molecule inhibitors have been identified whose structures are not based on amino acids. Activators of SLC1 family members have also been discovered but there are only a few examples known.
Resumo:
Four related cows showed hairless streaks on various parts of the body with no correlation to the pigmentation pattern. The stripes occurred in a consistent pattern resembling the lines of Blaschko. The non-syndromic hairlessness phenotype observed occurred across three generations of a single family and was compatible with an X-linked mode of inheritance. Linkage analysis and subsequent whole genome sequencing of one affected female identified two perfectly associated non-synonymous sequence variants in the critical interval on bovine chromosome X. Both variants occurred in complete linkage disequilibrium and were absent in more than 3900 controls. An ERCC6L missense mutation was predicted to cause an amino acid substitution of a non-conserved residue. Analysis in mice showed no specific Ercc6l expression pattern related to hair follicle development and therefore ERCC6L was not considered as causative gene. A point mutation at the 5'-splice junction of exon 5 of the TSR2, 20S rRNA accumulation, homolog (S. cerevisiae), gene led to the production of two mutant transcripts, both of which contain a frameshift and generate a premature stop codon predicted to truncate approximately 25% of the protein. Interestingly, in addition to the presence of both physiological TSR2 transcripts, the two mutant transcripts were predominantly detected in the hairless skin of the affected cows. Immunohistochemistry, using an antibody against the N-terminal part of the bovine protein demonstrated the specific expression of the TSR2 protein in the skin and the hair of the affected and the control cows as well as in bovine fetal skin and hair. The RNA hybridization in situ showed that Tsr2 was expressed in pre- and post-natal phases of hair follicle development in mice. Mammalian TSR2 proteins are highly conserved and are known to be broadly expressed, but their precise in vivo functions are poorly understood. Thus, by dissecting a naturally occurring mutation in a domestic animal species, we identified TSR2 as a regulator of hair follicle development.
Resumo:
A heterozygous mutation (c.643C>A; p.Q215X) in the monocarboxylate transporter 12-encoding gene MCT12 (also known as SLC16A12) that mediates creatine transport was recently identified as the cause of a syndrome with juvenile cataracts, microcornea, and glucosuria in a single family. Whereas the MCT12 mutation cosegregated with the eye phenotype, poor correlation with the glucosuria phenotype did not support a pathogenic role of the mutation in the kidney. Here, we examined MCT12 in the kidney and found that it resides on basolateral membranes of proximal tubules. Patients with MCT12 mutation exhibited reduced plasma levels and increased fractional excretion of guanidinoacetate, but normal creatine levels, suggesting that MCT12 may function as a guanidinoacetate transporter in vivo. However, functional studies in Xenopus oocytes revealed that MCT12 transports creatine but not its precursor, guanidinoacetate. Genetic analysis revealed a separate, undescribed heterozygous mutation (c.265G>A; p.A89T) in the sodium/glucose cotransporter 2-encoding gene SGLT2 (also known as SLC5A2) in the family that segregated with the renal glucosuria phenotype. When overexpressed in HEK293 cells, the mutant SGLT2 transporter did not efficiently translocate to the plasma membrane, and displayed greatly reduced transport activity. In summary, our data indicate that MCT12 functions as a basolateral exit pathway for creatine in the proximal tubule. Heterozygous mutation of MCT12 affects systemic levels and renal handling of guanidinoacetate, possibly through an indirect mechanism. Furthermore, our data reveal a digenic syndrome in the index family, with simultaneous MCT12 and SGLT2 mutation. Thus, glucosuria is not part of the MCT12 mutation syndrome.
Resumo:
Tricho-rhino-phalangeal syndrome (TRPS) is characterized by craniofacial and skeletal abnormalities, and subdivided in TRPS I, caused by mutations in TRPS1, and TRPS II, caused by a contiguous gene deletion affecting (amongst others) TRPS1 and EXT1. We performed a collaborative international study to delineate phenotype, natural history, variability, and genotype-phenotype correlations in more detail. We gathered information on 103 cytogenetically or molecularly confirmed affected individuals. TRPS I was present in 85 individuals (22 missense mutations, 62 other mutations), TRPS II in 14, and in 5 it remained uncertain whether TRPS1 was partially or completely deleted. Main features defining the facial phenotype include fine and sparse hair, thick and broad eyebrows, especially the medial portion, a broad nasal ridge and tip, underdeveloped nasal alae, and a broad columella. The facial manifestations in patients with TRPS I and TRPS II do not show a significant difference. In the limbs the main findings are short hands and feet, hypermobility, and a tendency for isolated metacarpals and metatarsals to be shortened. Nails of fingers and toes are typically thin and dystrophic. The radiological hallmark are the cone-shaped epiphyses and in TRPS II multiple exostoses. Osteopenia is common in both, as is reduced linear growth, both prenatally and postnatally. Variability for all findings, also within a single family, can be marked. Morbidity mostly concerns joint problems, manifesting in increased or decreased mobility, pain and in a minority an increased fracture rate. The hips can be markedly affected at a (very) young age. Intellectual disability is uncommon in TRPS I and, if present, usually mild. In TRPS II intellectual disability is present in most but not all, and again typically mild to moderate in severity. Missense mutations are located exclusively in exon 6 and 7 of TRPS1. Other mutations are located anywhere in exons 4-7. Whole gene deletions are common but have variable breakpoints. Most of the phenotype in patients with TRPS II is explained by the deletion of TRPS1 and EXT1, but haploinsufficiency of RAD21 is also likely to contribute. Genotype-phenotype studies showed that mutations located in exon 6 may have somewhat more pronounced facial characteristics and more marked shortening of hands and feet compared to mutations located elsewhere in TRPS1, but numbers are too small to allow firm conclusions.
Resumo:
The white sponge naevus is a rare benign, hereditary autosomal dominant disorder of the mucosa. The oral mucosa is most often affected, but vaginal and anal mucosal surfaces may also be involved. Clinically, a whitish-grey, ragged, and folded surface that has no clear demarcation and appears sponge-like is characteristic, often creating problems in differential diagnosis. A potential risk for malignant transformation of white sponge naevus lesions has not been reported. The therapy for this benign hereditary disorder is unknown, however does not appear to be necessary. In the present report of a family with known white sponge naevus in three different generations, clinical, histopathologic, cytopathologic, DNA-cytomertric, and genetic aspects are described and discussed.
Resumo:
Urea transporters (UTs) belonging to the solute carrier 14 (SLC14) family comprise two genes with a total of eight isoforms in mammals, UT-A1 to -A6 encoded by SLC14A2 and UT-B1 to -B2 encoded by SLC14A1. Recent efforts have been directed toward understanding the molecular and cellular mechanisms involved in the regulation of UTs using transgenic mouse models and heterologous expression systems, leading to important new insights. Urea uptake by UT-A1 and UT-A3 in the kidney inner medullary collecting duct and by UT-B1 in the descending vasa recta for the countercurrent exchange system are chiefly responsible for medullary urea accumulation in the urinary concentration process. Vasopressin, an antidiuretic hormone, regulates UT-A isoforms via the phosphorylation and trafficking of the glycosylated transporters to the plasma membrane that occurs to maintain equilibrium with the exocytosis and ubiquitin-proteasome degradation pathways. UT-B isoforms are also important in several cellular functions, including urea nitrogen salvaging in the colon, nitric oxide pathway modulation in the hippocampus, and the normal cardiac conduction system. In addition, genomic linkage studies have revealed potential additional roles for SLC14A1 and SLC14A2 in hypertension and bladder carcinogenesis. The precise role of UT-A2 and presence of the urea recycling pathway in normal kidney are issues to be further explored. This review provides an update of these advances and their implications for our current understanding of the SLC14 UTs.
Resumo:
Long-term success of family firms is of utmost social and economic importance. Three of its determinants are in the center of this Dissertation: firmlevel entrepreneurial orientation (EO), managers' entrepreneurial behavior, and value-creating attitudes of non-family employees. Each determinant and respective research gaps are addressed by one paper of this cumulative dissertation. Referring to firm-level EO, scholars claim that EO is a main antecedent to firms' both short- and long-term success. However, family firms seem to be successful across generations despite rather low levels of EO. The first paper addresses this paradox by investigating EO patterns of long-lived family firms in three Swiss case studies. The main finding is that the key to success is not to be as entrepreneurially as possible all the time, but to continuously adapt the EO profile depending on internal and external factors. Moreover, the paper suggest new subcategories to different EO dimensions. With regard to entrepreneurial behavior of managers, there is a lack of knowledge how individual-level and organizational level factors affect its evolvement. The second paper addresses this gap by investigating a sample of 403 middle-level managers from both family and non-family firms. It introduces psychological ownership of managers as individual-level antecedent and investigates the interaction with organizational factors. As a central insight, management support is found to strengthen the psychological ownership-entrepreneurial behavior relationship. The third paper is based on the fact that employees' justice perceptions are established antecedents of value-creating employee attitudes such as affective commitment and job satisfaction. Even though family firms are susceptible to nonfamily employees´ perceptions of injustice, corresponding research is scarce. Moreover, the mechanism connecting justice perceptions and positive outcomes is still unclear. Addressing these gaps, the analysis of a sample of 310 non-family employees reveals that psychological ownership is a mediator in the relationships between distributive justice perceptions and both affective commitment and job satisfaction. Altogether, the three papers offer valuable contributions to family business literature with respect to EO, entrepreneurial behavior, and value-creating employee attitudes. Thus, they increase current understanding about important determinants of family firms' long-term success, while opening up numerous ways of future research.
Resumo:
Objective: Significant others are central to patients' experience and management of their cancer illness. Building on our validation of the Distress Thermometer (DT) for family members, this investigation examines individual and collective distress in a sample of cancer patients and their matched partners, accounting for the aspects of gender and role. Method: Questionnaires including the DT were completed by a heterogeneous sample of 224 couples taking part in a multisite study. Results: Our investigation showed that male patients (34.2%), female patients (31.9%), and male partners (29.1%) exhibited very similar levels of distress, while female partners (50.5%) exhibited much higher levels of distress according to the DT. At the dyad level just over half the total sample contained at least one individual reporting significant levels of distress. Among dyads with at least one distressed person, the proportion of dyads where both individuals reported distress was greatest (23.6%). Gender and role analyses revealed that males and females were not equally distributed among the four categories of dyads (i.e. dyads with no distress; dyads where solely the patient or dyads where solely the partner is distressed; dyads where both are distressed). Conclusion: A remarkable number of dyads reported distress in one or both partners. Diverse patterns of distress within dyads suggest varying risks of psychosocial strain. Screening patients' partners in addition to patients themselves may enable earlier identification of risk settings. The support offered to either member of such dyads should account for their role- and gender-specific needs. Copyright © 2010 John Wiley ; Sons, Ltd.
Resumo:
The plasmin-antiplasmin system plays a key role in blood coagulation and fibrinolysis. Plasmin and (2)-antiplasmin are primarily responsible for a controlled and regulated dissolution of the fibrin polymers into soluble fragments. However, besides plasmin(ogen) and (2)-antiplasmin the system contains a series of specific activators and inhibitors. The main physiological activators of plasminogen are tissue-type plasminogen activator, which is mainly involved in the dissolution of the fibrin polymers by plasmin, and urokinase-type plasminogen activator, which is primarily responsible for the generation of plasmin activity in the intercellular space. Both activators are multidomain serine proteases. Besides the main physiological inhibitor (2)-antiplasmin, the plasmin-antiplasmin system is also regulated by the general protease inhibitor (2)-macroglobulin, a member of the protease inhibitor I39 family. The activity of the plasminogen activators is primarily regulated by the plasminogen activator inhibitors 1 and 2, members of the serine protease inhibitor superfamily.
Resumo:
We report a detailed physical analysis on a family of isolated, antiferro-magnetically (AF) coupled, chromium(III) finite chains, of general formula (Cr(RCO(2))(2)F)(n) where the chain length n = 6 or 7. Additionally, the chains are capped with a selection of possible terminating ligands, including hfac (= 1,1,1,5,5,5-hexafluoropentane-2,4-dionate(1-)), acac (= pentane-2,4-dionate(1-)) or (F)(3). Measurements by inelastic neutron scattering (INS), magnetometery and electron paramagnetic resonance (EPR) spectroscopy have been used to study how the electronic properties are affected by n and capping ligand type. These comparisons allowed the subtle electronic effects the choice of capping ligand makes for odd member spin 3/2 ground state and even membered spin 0 ground state chains to be investigated. For this investigation full characterisation of physical properties have been performed with spin Hamiltonian parameterisation, including the determination of Heisenberg exchange coupling constants and single ion axial and rhombic anisotropy. We reveal how the quantum spin energy levels of odd or even membered chains can be modified by the type of capping ligand terminating the chain. Choice of capping ligands enables Cr-Cr exchange coupling to be adjusted by 0, 4 or 24%, relative to Cr-Cr exchange coupling within the body of the chain, by the substitution of hfac, acac or (F)(3) capping ligands to the ends of the chain, respectively. The manipulation of quantum spin levels via ligands which play no role in super-exchange, is of general interest to the practise of spin Hamilton modelling, where such second order effects are generally not considered of relevance to magnetic properties.
Resumo:
To systematically evaluate the existing evidence to answer the focused question: For a patient with a single tooth to be replaced, is the implant crown, based on economic considerations, preferred to a conventional fixed partial denture?
Resumo:
Inert gas washout tests, performed using the single- or multiple-breath washout technique, were first described over 60 years ago. As measures of ventilation distribution inhomogeneity, they offer complementary information to standard lung function tests, such as spirometry, as well as improved feasibility across wider age ranges and improved sensitivity in the detection of early lung damage. These benefits have led to a resurgence of interest in these techniques from manufacturers, clinicians and researchers, yet detailed guidelines for washout equipment specifications, test performance and analysis are lacking. This manuscript provides recommendations about these aspects, applicable to both the paediatric and adult testing environment, whilst outlining the important principles that are essential for the reader to understand. These recommendations are evidence based, where possible, but in many places represent expert opinion from a working group with a large collective experience in the techniques discussed. Finally, the important issues that remain unanswered are highlighted. By addressing these important issues and directing future research, the hope is to facilitate the incorporation of these promising tests into routine clinical practice.
Resumo:
The application of scientific-based conservation measures requires that sampling methodologies in studies modelling similar ecological aspects produce comparable results making easier their interpretation. We aimed to show how the choice of different methodological and ecological approaches can affect conclusions in nest-site selection studies along different Palearctic meta-populations of an indicator species. First, a multivariate analysis of the variables affecting nest-site selection in a breeding colony of cinereous vulture (Aegypius monachus) in central Spain was performed. Then, a meta-analysis was applied to establish how methodological and habitat-type factors determine differences and similarities in the results obtained by previous studies that have modelled the forest breeding habitat of the species. Our results revealed patterns in nesting-habitat modelling by the cinereous vulture throughout its whole range: steep and south-facing slopes, great cover of large trees and distance to human activities were generally selected. The ratio and situation of the studied plots (nests/random), the use of plots vs. polygons as sampling units and the number of years of data set determined the variability explained by the model. Moreover, a greater size of the breeding colony implied that ecological and geomorphological variables at landscape level were more influential. Additionally, human activities affected in greater proportion to colonies situated in Mediterranean forests. For the first time, a meta-analysis regarding the factors determining nest-site selection heterogeneity for a single species at broad scale was achieved. It is essential to homogenize and coordinate experimental design in modelling the selection of species' ecological requirements in order to avoid that differences in results among studies would be due to methodological heterogeneity. This would optimize best conservation and management practices for habitats and species in a global context.
Resumo:
Transporters for vitamin C and its oxidized form dehydroascorbic acid (DHA) are crucial to maintain physiological concentrations of this important vitamin that is used in a variety of biochemical processes. The human SLC23 family consists of the Na(+)-dependent vitamin C transporters SVCT1 (encoded by the SLC23A1 gene) and SVCT2 (SLC23A2) as well as an orphan transporter SVCT3 (SLC23A3). Phylogenetically, the SLC23 family belongs to the nucleobase-ascorbate transporter (NAT) family, although no nucleobase transport has yet been demonstrated for the human members of this family. The SVCT1 and SVCT2 transporters are rather specific for ascorbic acid, which is an important antioxidant and plays a crucial role in a many metal-containing enzymes. SVCT1 is expressed predominantly in epithelial tissues such as intestine where it contributes to the supply and maintenance of whole-body ascorbic acid levels. In contrast to various other mammals, humans are not capable of synthesizing ascorbic acid from glucose and therefore the uptake of ascorbic acid from the diet via SVCT1 is essential for maintaining appropriate concentrations of vitamin C in the human body. The expression of SVCT2 is relatively widespread, where it serves to either deliver ascorbic acid to tissues with high demand of the vitamin for enzymatic reactions or to protect metabolically highly active cells or specialized tissues from oxidative stress. The murine Slc23a3 gene encoding the orphan transporter SVCT3 was originally cloned from mouse yolk sac, and subsequent studies showed that it is expressed in the kidney. However, the function of SVCT3 has not been reported and it remains speculative as to whether SVCT3 is a nucleobase transporter.