2 resultados para Hospital - organizational climate

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

40.00% 40.00%

Publicador:

Resumo:

RATIONALE, AIMS AND OBJECTIVES Safety climate measurements are a broadly used element of improvement initiatives. In order to provide a sound and easy-to-administer instrument for the use in Swiss hospitals, we translated the Safety Climate Survey into German and French. METHODS After translating the Safety Climate Survey into French and German, a cross-sectional survey study was conducted with health care professionals (HCPs) in operating room (OR) teams and on OR-related wards in 10 Swiss hospitals. Validity of the instrument was examined by means of Cronbach's alpha and missing rates of the single items. Item-descriptive statistics group differences and percentage of 'problematic responses' (PPR) were calculated. RESULTS 3153 HCPs completed the survey (response rate: 63.4%). 1308 individuals were excluded from the analyses because of a profession other than doctor or nurse or invalid answers (n = 1845; nurses = 1321, doctors = 523). Internal consistency of the translated Safety Climate Survey was good (Cronbach's alpha G erman  = 0.86; Cronbach's alpha F rench  = 0.84). Missing rates at item level were rather low (0.23-4.3%). We found significant group differences in safety climate values regarding profession, managerial function, work area and time spent in direct patient care. At item level, 14 out of 21 items showed a PPR higher than 10%. CONCLUSIONS Results indicate that the French and German translations of the Safety Climate Survey might be a useful measurement instrument for safety climate in Swiss hospital units. Analyses at item level allow for differentiating facets of safety climate into more positive and critical safety climate aspects.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The predicted global warming may affect freshwater systems at several organizational levels, from organism to ecosystem. Specifically, in temperate regions, the projected increase of winter temperatures may have important effects on the over-winter biology of a range of organisms and especially for fish and other ectothermic animals. However, temperature effects on organisms may be directed strongly by resource availability. Here, we investigated whether over-winter loss of biomass and lipid content of juvenile roach (Rutilus rutilus) was affected by the physiologically relatively small (2-5°C) changes of winter temperatures predicted by the Intergovernmental Panel on Climate Change (IPCC), under both natural and experimental conditions. This was investigated in combination with the effects of food availability. Finally, we explored the potential for a correlation between lake temperature and resource levels for planktivorous fish, i.e., zooplankton biomass, during five consecutive winters in a south Swedish lake. We show that small increases in temperature (+2°C) affected fish biomass loss in both presence and absence of food, but negatively and positively respectively. Temperature alone explained only a minor part of the variation when food availability was not taken into account. In contrast to other studies, lipid analyses of experimental fish suggest that critical somatic condition rather than critical lipid content determined starvation induced mortality. Our results illustrate the importance of considering not only changes in temperature when predicting organism response to climate change but also food-web interactions, such as resource availability and predation. However, as exemplified by our finding that zooplankton over-winter biomass in the lake was not related to over-winter temperature, this may not be a straightforward task.