4 resultados para Horizontal transfer
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
Mycobacterium abscessus, Mycobacterium bolletii, and Mycobacterium massiliense (Mycobacterium abscessus sensu lato) are closely related species that currently are identified by the sequencing of the rpoB gene. However, recent studies show that rpoB sequencing alone is insufficient to discriminate between these species, and some authors have questioned their current taxonomic classification. We studied here a large collection of M. abscessus (sensu lato) strains by partial rpoB sequencing (752 bp) and multilocus sequence analysis (MLSA). The final MLSA scheme developed was based on the partial sequences of eight housekeeping genes: argH, cya, glpK, gnd, murC, pgm, pta, and purH. The strains studied included the three type strains (M. abscessus CIP 104536(T), M. massiliense CIP 108297(T), and M. bolletii CIP 108541(T)) and 120 isolates recovered between 1997 and 2007 in France, Germany, Switzerland, and Brazil. The rpoB phylogenetic tree confirmed the existence of three main clusters, each comprising the type strain of one species. However, divergence values between the M. massiliense and M. bolletii clusters all were below 3% and between the M. abscessus and M. massiliense clusters were from 2.66 to 3.59%. The tree produced using the concatenated MLSA gene sequences (4,071 bp) also showed three main clusters, each comprising the type strain of one species. The M. abscessus cluster had a bootstrap value of 100% and was mostly compact. Bootstrap values for the M. massiliense and M. bolletii branches were much lower (71 and 61%, respectively), with the M. massiliense cluster having a fuzzy aspect. Mean (range) divergence values were 2.17% (1.13 to 2.58%) between the M. abscessus and M. massiliense clusters, 2.37% (1.5 to 2.85%) between the M. abscessus and M. bolletii clusters, and 2.28% (0.86 to 2.68%) between the M. massiliense and M. bolletii clusters. Adding the rpoB sequence to the MLSA-concatenated sequence (total sequence, 4,823 bp) had little effect on the clustering of strains. We found 10/120 (8.3%) isolates for which the concatenated MLSA gene sequence and rpoB sequence were discordant (e.g., M. massiliense MLSA sequence and M. abscessus rpoB sequence), suggesting the intergroup lateral transfers of rpoB. In conclusion, our study strongly supports the recent proposal that M. abscessus, M. massiliense, and M. bolletii should constitute a single species. Our findings also indicate that there has been a horizontal transfer of rpoB sequences between these subgroups, precluding the use of rpoB sequencing alone for the accurate identification of the two proposed M. abscessus subspecies.
Resumo:
Strains of Actinobacillus porcitonsillarum are regularly isolated from the tonsils of healthy pigs. A. porcitonsillarum is non pathogenic but phenotypically it strongly resembles the pathogenic species Actinobacillus pleuropneumoniae, thereby interfering with the diagnosis of the latter. A. porcitonsillarum is hemolytic but unlike A. pleuropneumoniae, it contains only apxII genes and not apxI or apxIII genes. In contrast to the truncated apxII operon of A. pleuropneumoniae, which lacks the type I secretion genes BD, characterization of the apxII operon in A. porcitonsillarum revealed that it contains an intact and complete apxII operon. This shows a typical RTX operon structure with the gene arrangement apxIICABD. The region upstream of the apxII operon is also different from that in A. pleuropneumoniae and contains an additional gene, aspC, encoding a putative aspartate aminotransferase. Trans-complementation experiments in Escherichia coli and A. pleuropneumoniae indicated that the entire apxII operon of A. porcitonsillarum is sufficient to express and secrete the ApxIIA toxin and that the ApxIIA toxin of A. pleuropneumoniae can be secreted by the type I secretion system encoded by apxIIBD. These findings suggest that the complete apxII operon found in A. porcitonsillarum might be an ancestor of the truncated homologue found in A. pleuropneumoniae. The genetic context of the apxII locus in A. porcitonsillarum and A. pleuropneumoniae suggests that in the latter, the contemporary truncated operon is the result of a recombination event within the species, rather than a horizontal transfer of an incomplete operon.
Resumo:
RTX toxins (repeats in the structural toxin) are pore-forming protein toxins produced by a broad range of pathogenic Gram-negative bacteria. In vitro, RTX toxins mostly exhibit a cytotoxic and often also a hemolytic activity. They are particularly widespread in species of the family Pasteurellaceae which cause infectious diseases, most frequently in animals but also in humans. Most RTX toxins are proteins with a molecular mass of 100-200 kDa and are post-translationally activated by acylation via a specific activator protein. The repeated structure of RTX toxins, which gave them their name, is composed of iterative glycine-rich nonapeptides binding Ca2+ on the C-terminal half of the protein. Genetic analysis of RTX toxins of various species of Pasteurellaceae and of a few other Gram-negative bacteria gave evidence of horizontal transfer of genes encoding RTX toxins and led to speculations that RTX toxins might have originated from Pasteurellaceae. The toxic activities of RTX toxins in host cells may lead to necrosis and apoptosis and the underlying detailed mechanisms are currently under investigation. The impact of RTX toxins in pathogenicity and the immune responses of the host were described for several species of Pasteurellaceae. Neutralizing antibodies were shown to significantly reduce the cytotoxic activity of RTX toxins. They constitute a valuable strategy in the development of immuno-prophylactics against several animal diseases caused by pathogenic species of Pasteurellaceae. Although many RTX toxins possess cytotoxic and hemolytic activities toward a broad range of cells and erythrocytes, respectively, a few RTX toxins were shown to have cytotoxic activity only against cells of specific hosts and/or show cell-type specificity. Further evidence exists that RTX toxins play a potential role in host specificity of certain pathogens.
Resumo:
A collection of 77 Staphylococcus intermedius isolates from dogs and cats in Switzerland was examined for resistance to erythromycin. Resistance profiles for 14 additional antibiotics were compared between erythromycin-resistant and susceptible isolates. A resistance prevalence of 27% for erythromycin was observed in the population under study. Complete correlation between resistance to erythromycin, and to spiramycin, streptomycin, and neomycin was observed. The erythromycin-resistant isolates all had a reduced susceptibility to clindamycin when compared to the erythromycin-susceptible isolates. Both constitutive and inducible resistance phenotypes were observed for clindamycin. Ribotyping showed that macrolide-aminoglycoside resistance was randomly distributed among unrelated strains. This suggests that this particular resistance profile is not related to a single bacterial clone but to the horizontal transfer of resistance gene clusters in S. intermedius populations. The erythromycin-resistant isolates were all carrying erm(B), but not erm(A), erm(C), or msr(A). The erm(B) gene was physically linked to Tn5405-like elements known as resistance determinants for streptomycin, streptothricin, neomycin and kanamycin. Analysis of the region flanking erm(B) showed the presence of two different groups of erm(B)-Tn5405-like elements in the S. intermedius population examined and of elements found in Gram-positive species other than staphylococci. This strongly suggests that erm(B) or the whole erm(B)-Tn5405-like elements in S. intermedius originate from other bacterial species, possibly from enterococci.