4 resultados para Honda CVCC.

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

10.00% 10.00%

Publicador:

Resumo:

CD8 T cells play a key role in mediating protective immunity against selected pathogens after vaccination. Understanding the mechanism of this protection is dependent upon definition of the heterogeneity and complexity of cellular immune responses generated by different vaccines. Here, we identify previously unrecognized subsets of CD8 T cells based upon analysis of gene-expression patterns within single cells and show that they are differentially induced by different vaccines. Three prime-boost vector combinations encoding HIV Env stimulated antigen-specific CD8 T-cell populations of similar magnitude, phenotype, and functionality. Remarkably, however, analysis of single-cell gene-expression profiles enabled discrimination of a majority of central memory (CM) and effector memory (EM) CD8 T cells elicited by the three vaccines. Subsets of T cells could be defined based on their expression of Eomes, Cxcr3, and Ccr7, or Klrk1, Klrg1, and Ccr5 in CM and EM cells, respectively. Of CM cells elicited by DNA prime-recombinant adenoviral (rAd) boost vectors, 67% were Eomes(-) Ccr7(+) Cxcr3(-), in contrast to only 7% and 2% stimulated by rAd5-rAd5 or rAd-LCMV, respectively. Of EM cells elicited by DNA-rAd, 74% were Klrk1(-) Klrg1(-)Ccr5(-) compared with only 26% and 20% for rAd5-rAd5 or rAd5-LCMV. Definition by single-cell gene profiling of specific CM and EM CD8 T-cell subsets that are differentially induced by different gene-based vaccines will facilitate the design and evaluation of vaccines, as well as enable our understanding of mechanisms of protective immunity.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The purpose of this document is to make the output of the International Working Group for Intravascular Optical Coherence Tomography (IWG-IVOCT) Standardization and Validation available to medical and scientific communities, through a peer-reviewed publication, in the interest of improving the diagnosis and treatment of patients with atherosclerosis, including coronary artery disease.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The congenital form of thrombotic thrombocytopenic purpura (TTP) is caused by genetic mutations in ADAMTS13. Some, but not all, congenital TTP patients manifest renal insufficiency in addition to microangiopathic hemolysis and thrombocytopenia. We included 32 congenital TTP patients in the present study, which was designed to assess whether congenital TTP patients with renal insufficiency have predisposing mutations in complement regulatory genes, as found in many patients with atypical hemolytic uremic syndrome (aHUS). In 13 patients with severe renal insufficiency, six candidate complement or complement regulatory genes were sequenced and 11 missense mutations were identified. One of these missense mutations, C3:p.K155Q mutation, is a rare mutation located in the macroglobulin-like 2 domain of C3, where other mutations predisposing for aHUS cluster. Several of the common missense mutations identified in our study have been reported to increase disease-risk for aHUS, but were not more common in patients with as compared to those without renal insufficiency. Taken together, our results show that the majority of the congenital TTP patients with renal insufficiency studied do not carry rare genetic mutations in complement or complement regulatory genes.