2 resultados para Histopathological aspects
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
The quality of dental care and modern achievements in dental science depend strongly on understanding the properties of teeth and the basic principles and mechanisms involved in their interaction with surrounding media. Erosion is a disorder to which such properties as structural features of tooth, physiological properties of saliva, and extrinsic and intrinsic acidic sources and habits contribute, and all must be carefully considered. The degree of saturation in the surrounding solution, which is determined by pH and calcium and phosphate concentrations, is the driving force for dissolution of dental hard tissue. In relation to caries, with the calcium and phosphate concentrations in plaque fluid, the 'critical pH' below which enamel dissolves is about 5.5. For erosion, the critical pH is lower in products (e.g. yoghurt) containing more calcium and phosphate than plaque fluid and higher when the concentrations are lower. Dental erosion starts by initial softening of the enamel surface followed by loss of volume with a softened layer persisting at the surface of the remaining tissue. Dentine erosion is not clearly understood, so further in vivo studies, including histopathological aspects, are needed. Clinical reports show that exposure to acids combined with an insufficient salivary flow rate results in enhanced dissolution. The effects of these and other interactions result in a permanent ion/substance exchange and reorganisation within the tooth material or at its interface, thus altering its strength and structure. The rate and severity of erosion are determined by the susceptibility of the dental tissues towards dissolution. Because enamel contains less soluble mineral than dentine, it tends to erode more slowly. The chemical mechanisms of erosion are also summarised in this review. Special attention is given to the microscopic and macroscopic histopathology of erosion.
Resumo:
Equine pastern vasculitis is clinically challenging and the underlying aetiopathogenesis is unclear. The aims of this retrospective study were to establish histopathological criteria for pastern vasculitis, to look for an underlying cause, to investigate whether the histopathological lesions are associated with a distinct clinical picture, to assess if and how the clinical picture varies, and to determine the treatment response. Skin biopsies and clinical data from 20 horses with a diagnosis of vasculitis of the distal extremities were investigated and histology was compared to biopsies from healthy horses. It was concluded that intramural inflammatory cells, leukocytoclasia with nuclear dust, thickening and oedema of the vessel walls, and microhaemorrhages are highly specific histological findings in equine pastern vasculitis. Based on the feedback from the clinicians, the lesions were mostly seen on the lateral and medial aspects of un-pigmented legs. Lesions in white skin were characterised by exudation and crusts, whereas those in pigmented skin were alopecic and characterised by scaling. The response to treatment was poor and the prognosis guarded. No association was found between any of the histopathological findings and a distinct clinical picture. An underlying cause of equine pastern vasculitis could not be identified. Considering the large number of confounding factors, the causative agents are difficult to identify, but may involve drugs or a hypersensitivity reactions to yet unknown antigens.