4 resultados para Hippocampal Region
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
We assessed the efficacy and the toxicity for pediatric craniopharyngioma patients of fractionated stereotactic radiotherapy (FSRT). Between May 2000 and May 2009, 9 patients (male to female ratio, 5:4) with craniopharyngiomas underwent FSRT (median dose, 54 Gy). Among the 9 patients, 6 received radiation therapy (RT) for recurrent tumors and 3 for residual disease as adjuvant therapy after incomplete surgery. Median tumor 3 volume was 2.3 cm (range, 0.1-5.8). The median target coverage was 93.7% (range 79.3-99.8%). The median conformity index was 0.94 (range, 0.6-1.4). Dose to the hippocampal region was assessed for all patients. After a median follow-up of 62.5 months (range, 32-127)the treated volume decreased in size in four of eight patients (50%). One patient was lost to follow-up. Local control and survival rates at 3 years were 100% and there were no marginal relapses. One patient, with a chronic bilateral papillary oedema after surgery, visual defect deteriorated after FSRT to a complete hemianopsia. One male patient with normal pituitary function before FSRT presented with precocious puberty at the age of 7.4 years, 24 months after FSRT. Four patients (50%) were severely obese at their last visit. FSRT is a safe treatment option for craniopharyngioma after incomplete resection.
Resumo:
Pneumococcal meningitis causes apoptosis of developing neurons in the dentate gyrus of the hippocampus. The death of these cells is accompanied with long-term learning and memory deficits in meningitis survivors. Here, we studied the role of the PI3K/Akt (protein kinase B) survival pathway in hippocampal apoptosis in a well-characterized infant rat model of pneumococcal meningitis. Meningitis was accompanied by a significant decrease of the PI3K product phosphatidylinositol 3,4,5-trisphosphate (PIP(3)) and of phosphorylated (i.e., activated) Akt in the hippocampus. At the cellular level, phosphorylated Akt was decreased in both the granular layer and the subgranular zone of the dentate gyrus, the region where the developing neurons undergo apoptosis. Protein levels and activity of PTEN, the major antagonist of PI3K, were unaltered by infection, suggesting that the observed decrease in PIP(3) and Akt phosphorylation is a result of decreased PI3K signaling. Treatment with the PTEN inhibitor bpV(pic) restored Akt activity and significantly attenuated hippocampal apoptosis. Co-treatment with the specific PI3K inhibitor LY294002 reversed the restoration of Akt activity and attenuation of hippocampal apoptosis, while it had no significant effect on these parameters on its own. These results indicate that the inhibitory effect of bpV(pic) on apoptosis was mediated by PI3K-dependent activation of Akt, strongly suggesting that bpV(pic) acted on PTEN. Treatment with bpV(pic) also partially inhibited the concentration of bacteria and cytokines in the CSF, but this effect was not reversed by LY294002, indicating that the effect of bpV(pic) on apoptosis was independent of its effect on CSF bacterial burden and cytokine levels. These results indicate that the PI3K/Akt pathway plays an important role in the death and survival of developing hippocampal neurons during the acute phase of pneumococcal meningitis.
Resumo:
Synapses of hippocampal neurons play important roles in learning and memory processes and are involved in aberrant hippocampal function in temporal lobe epilepsy. Major neuronal types in the hippocampus as well as their input and output synapses are well known, but it has remained an open question to what extent conventional electron microscopy (EM) has provided us with the real appearance of synaptic fine structure under in vivo conditions. There is reason to assume that conventional aldehyde fixation and dehydration lead to protein denaturation and tissue shrinkage, likely associated with the occurrence of artifacts. However, realistic fine-structural data of synapses are required for our understanding of the transmission process and for its simulation. Here, we used high-pressure freezing and cryosubstitution of hippocampal tissue that was not subjected to aldehyde fixation and dehydration in ethanol to monitor the fine structure of an identified synapse in the hippocampal CA3 region, that is, the synapse between granule cell axons, the mossy fibers, and the proximal dendrites of CA3 pyramidal neurons. Our results showed that high-pressure freezing nicely preserved ultrastructural detail of this particular synapse and allowed us to study rapid structural changes associated with synaptic plasticity.
Resumo:
Mechanical injury of the CNS frequently results from accidents but also occurs in the course of neurosurgical interventions. A great variety of anatomical and physiological changes have been described to evolve after a brain trauma yet only little is known about processes that occur during a trauma. In the present study, I obtained whole-cell patch clamp recordings from pyramidal cells in hippocampal slice cultures while mechanically lesioning the CA3 area. Electrophysiological analysis revealed that traumatic injury massively increased excitatory and inhibitory synaptic activity in the entire CA3 region. Cutting the CA3 region induced highly rhythmic excitatory postsynaptic currents (EPSCs) that reached frequencies of around 70 Hz. Blocking voltage-dependent sodium channels with tetrodotoxin prevented the increase in synaptic activity and injury-induced neurotransmitter release in CA3 remote from the lesion site. With fast synaptic transmission blocked only neurons in the immediate vicinity of a lesion depolarized and fired action potentials upon mechanical damage. I hence suggest that mechanical injury damages the membrane and induces action potential firing in only a small population of neurons. This activity is then propagated throughout the undamaged CA3 network inducing highly rhythmic discharges. Thus mechanical brain injury initiates immediate functional changes that exceed the lesion site.