11 resultados para High Power Laser Beam
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
Early detection is a major goal in the management of malignant melanoma. Besides clinical assessment many noninvasive technologies such as dermoscopy, digital dermoscopy and in vivo laser scanner microscopy are used as additional methods. Herein we tested a system to assess lesional perfusion as a tool for early melanoma detection.
Resumo:
Tumor budding is recognized by the World Health Organization as an additional prognostic factor in colorectal cancer but remains unreported in diagnostic work due to the absence of a standardized scoring method. This study aims to assess the most prognostic and reproducible scoring systems for tumor budding in colorectal cancer. Tumor budding on pancytokeratin-stained whole tissue sections from 105 well-characterized stage II patients was scored by 3 observers using 7 methods: Hase, Nakamura, Ueno, Wang (conventional and rapid method), densest high-power field, and 10 densest high-power fields. The predictive value for clinicopathologic features, the prognostic significance, and interobserver variability of each scoring method was analyzed. Pancytokeratin staining allowed accurate evaluation of tumor buds. Interobserver agreement for 3 observers was excellent for densest high-power field (intraclass correlation coefficient, 0.83) and 10 densest high-power fields (intraclass correlation coefficient, 0.91). Agreement was moderate to substantial for the conventional Wang method (κ = 0.46-0.62) and moderate for the rapid method (κ = 0.46-0.58). For Nakamura, moderate agreement (κ = 0.41-0.52) was reached, whereas concordance was fair to moderate for Ueno (κ = 0.39-0.56) and Hase (κ = 0.29-0.51). The Hase, Ueno, densest high-power field, and 10 densest high-power field methods identified a significant association of tumor budding with tumor border configuration. In multivariate analysis, only tumor budding as evaluated in densest high-power field and 10 densest high-power fields had significant prognostic effects on patient survival (P < .01), with high prognostic accuracy over the full 10-year follow-up. Scoring tumor buds in 10 densest high-power fields is a promising method to identify stage II patients at high risk for recurrence in daily diagnostics; it is highly reproducible, accounts for heterogeneity, and has a strong predictive value for adverse outcome.
Resumo:
Although tumor budding is linked to adverse prognosis in colorectal cancer, it remains largely unreported in daily diagnostic work due to the absence of a standardized scoring method. Our aim was to assess the inter-observer agreement of a novel 10-high-power-fields method for assessment of tumor budding at the invasive front and to confirm the prognostic value of tumor budding in our setting of colorectal cancers. Whole tissue sections of 215 colorectal cancers with full clinico-pathological and follow-up information were stained with cytokeratin AE1/AE3 antibody. Presence of buds was scored across 10-high-power fields at the invasive front by two pathologists and two additional observers were asked to score 50 cases of tumor budding randomly selected from the larger cohort. The measurements were correlated to the patient and tumor characteristics. Inter-observer agreement and correlation between observers' scores were excellent (P<0.0001; intraclass correlation coefficient=0.96). A test subgroup of 65 patients (30%) was used to define a valid cutoff score for high-grade tumor budding and the remaining 70% of the patients were entered into the analysis. High-grade budding was defined as an average of ≥10 buds across 10-high-power fields. High-grade budding was associated with a higher tumor grade (P<0.0001), higher TNM stage (P=0.0003), vascular invasion (P<0.0001), infiltrating tumor border configuration (P<0.0001) and reduced survival (P<0.0001). Multivariate analysis confirmed its independent prognostic effect (P=0.007) when adjusting for TNM stage and adjuvant therapy. Using 10-high-power fields for evaluating tumor budding has independent prognostic value and shows excellent inter-observer agreement. Like the BRE and Gleason scores in breast and prostate cancers, respectively, tumor budding could be a basis for a prognostic score in colorectal cancer.
Resumo:
OBJECTIVE To compare speech understanding of the BAHA BP110 and BAHA Intenso sound processors. STUDY DESIGN Prospective experimental study. SETTING Tertiary referral center. PATIENTS Twenty experienced user of osseointegrated auditory implants with conductive or mixed hearing loss. INTERVENTIONS In a first session, half of the participants were fitted with an Intenso, the other half with a BP110. After 1 month of use, aided speech understanding in quiet and in noise was measured, and the other test processor was fitted. One month later, speech understanding with the second sound processor was assessed. MAIN OUTCOME MEASURES Speech understanding in quiet and in noise, with noise arriving either from the front, the rear, or the side of the user with the osseointegrated bone conductor. RESULTS Significant improvements were found for both processors for speech understanding in quiet (+9.6 to +34.8 percent points; p = 0.02 to 0.001) and in noise (+6.2 to +13.8 dB, p < 0.001). No significant differences were found between the 2 devices for speech in quiet. For noise from the rear, subjects were able to understand speech at signal-to-noise ratios which were lower (less favorable) by -5.1 dB (p < 0.001) when compared with the Intenso. CONCLUSION Speech understanding is substantially improved by both devices, with no significant differences between the sound processors in quiet. In noise, speech understanding is significantly better with the BP110 when compared to the Intenso for noise from the rear.
Resumo:
We present a power-scalable approach for yellow laser-light generation based on standard Ytterbium (Yb) doped fibers. To force the cavity to lase at 1154 nm, far above the gain-maximum, measures must be taken to fulfill lasing condition and to suppress competing amplified spontaneous emission (ASE) in the high-gain region. To prove the principle we built a fiber-laser cavity and a fiber-amplifier both at 1154 nm. In between cavity and amplifier we suppressed the ASE by 70 dB using a fiber Bragg grating (FBG) based filter. Finally we demonstrated efficient single pass frequency doubling to 577 nm with a periodically poled lithium niobate crystal (PPLN). With our linearly polarized 1154 nm master oscillator power fiber amplifier (MOFA) system we achieved slope efficiencies of more than 15 % inside the cavity and 24 % with the fiber-amplifier. The frequency doubling followed the predicted optimal efficiency achievable with a PPLN crystal. So far we generated 1.5 W at 1154nm and 90 mW at 577 nm. Our MOFA approach for generation of 1154 nm laser radiation is power-scalable by using multi-stage amplifiers and large mode-area fibers and is therefore very promising for building a high power yellow laser-light source of several tens of Watt.
Resumo:
This study evaluated (1) the micromorphology by scanning electron microscopy (SEM) and (2) the adhesive performance by microtensile bond strength (μTBS) of diamond bur-treated dentin compared to Er:YAG laser-treated dentin of human primary teeth. (1) For qualitative SEM evaluation, dentin of 18 second primary molars (n = 3/method) was treated with either diamond bur as a control (group 1a: 40 μm diamond bur only (clinical situation); group 1b: grinding + 40 μm diamond bur) or with Er:YAG laser (group 2a (clinical situation, manufacturer's settings): 200 mJ/25 Hz (5 W) + 100 mJ/35 Hz (3.5 W) laser only; group 2b (experimental setting "high"): grinding + 400 mJ/20 Hz (8 W); group 2c (manufacturer's setting "finishing"): grinding + 100 mJ/35 Hz (3.5 W); group 2d (experimental setting "low"): grinding + 50 mJ/35 Hz (1.75 W)). (2) For evaluation of adhesive performance, 64 second primary molars were divided into four groups and treated as described for group 1b and groups 2b/c/d (n = 16/method), and μTBS of Clearfil SE/Clearfil Majesty Esthetic to dentin was measured. The SEM micrographs were qualitatively analyzed. The μTBS values were compared with a Kruskal-Wallis test. The significance level was set at α = 0.05. SEM micrographs showed the typical micromorphologies with a smear layer for the diamond bur groups and open dentin tubules for all laser-treated groups. However, in group 2d, the laser beam had insufficiently irradiated the dentin area, rendering the underlying ground surface partly visible. There were no statistically significant differences between μTBS values of the four groups (p = 0.394). This suggests that Er:YAG laser treatment of dentin of primary molars provides bond strengths similar to those obtained following diamond bur treatment.
Resumo:
We present experimental results on the intracavity generation of radially polarized light by incorporation of a polarization-selective mirror in a CO2 -laser resonator. The selectivity is achieved with a simple binary dielectric diffraction grating etched in the backsurface of the mirror substrate. Very high polarization selectivity was achieved, and good agreement of simulation and experimental results is shown. The overall radial polarization purity of the generated laser beam was found to be higher than 90% .