42 resultados para High Harmonic Generation
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
The absolute sign of local polarity in relation to the biological growth direction has been investigated for teeth cementum using phase sensitive second harmonic generation microscopy (PS-SHGM) and a crystal of 2-cyclooctylamino-5-nitropyridine (COANP) as a nonlinear optic (NLO) reference material. A second harmonic generation (SHG) response was found in two directions of cementum: radial (acellular extrinsic fibers that are oriented more or less perpendicular to the root surface) and circumferential (cellular intrinsic fibers that are oriented more or less parallel to the surface). A mono-polar state was demonstrated for acellular extrinsic cementum. However, along the different parts of cementum in circumferential direction, two corresponding domains were observed featuring an opposite sign of polarity indicative for a bi-polar microscopic state of cellular intrinsic cementum. The phase information showed that the orientation of radial collagen fibrils of cementum is regularly organized with the donor (D) groups pointing to the surface. Circumferential collagen molecules feature orientational disorder and are oriented up and down in random manner showing acceptor or donor groups at the surface of cementum. Considering that the cementum continues to grow in thickness throughout life, we can conclude that the cementum is growing circumferentially in two opposite directions and radially in one direction. A Markov chain type model for polarity formation in the direction of growth predicts D-groups preferably appearing at the fiber front.
Resumo:
A statistical mechanics view leads to the conclusion that polar molecules allowed to populate a degree of freedom for orientational disorder in a condensed phase thermalize into a bi-polar state featuring zero net polarity. In cases of orientational disorder polar order of condensed molecular matter can only exist in corresponding sectors of opposite average polarities. Channel type inclusion compounds, single component molecular crystals, solid solutions, optically anomalous crystals, inorganic ionic crystals, biomimetic crystals and biological tissues investigated by scanning pyroelectric and phase sensitive second harmonic generation microscopy all showed domains of opposite polarities in their final grown state. For reported polar molecular crystal structures it is assumed that kinetic hindrance along one direction of the polar axis is preventing the formation of a bi-polar state, thus allowing for a kinetically controlled mono-domain state. In this review we summarize theoretical and experimental findings leading to far reaching conclusions on the polar state of solid molecular matter. “… no stationary state … of a system has an electrical dipole moment.” P. W. Anderson, Science, 1972, 177, 393.
Resumo:
Polar molecular crystals seem to contradict a quantum mechanical statement, according to which no stationary state of a system features a permanent electrical polarization. By stationary we understand here an ensemble for which thermal averaging applies. In the language of statistical mechanics we have thus to ask for the thermal expectation value of the polarization in molecular crystals. Nucleation aggregates and growing crystal surfaces can provide a single degree of freedom for polar molecules required to average the polarization. By means of group theoretical reasoning and Monte Carlo simulations we show that such systems thermalize into a bi-polar state featuring zero bulk polarity. A two domain, i.e. bipolar state is obtained because boundaries are setting up opposing effective electrical fields. Described phenomena can be understood as a process of partial ergodicity-restoring. Experimentally, a bi-polar state of molecular crystals was demonstrated using phase sensitive second harmonic generation and scanning pyroelectric microscopy
Resumo:
OBJECTIVES: We sought to determine both the procedural performance and safety of percutaneous implantation of the second (21-French [F])- and third (18-F)-generation CoreValve aortic valve prosthesis (CoreValve Inc., Irvine, California). BACKGROUND: Percutaneous aortic valve replacement represents an emerging alternative therapy for high-risk and inoperable patients with severe symptomatic aortic valve stenosis. METHODS: Patients with: 1) symptomatic, severe aortic valve stenosis (area <1 cm2); 2) age > or =80 years with a logistic EuroSCORE > or =20% (21-F group) or age > or =75 years with a logistic EuroSCORE > or =15% (18-F group); or 3) age > or =65 years plus additional prespecified risk factors were included. Introduction of the 18-F device enabled the transition from a multidisciplinary approach involving general anesthesia, surgical cut-down, and cardiopulmonary bypass to a truly percutaneous approach under local anesthesia without hemodynamic support. RESULTS: A total of 86 patients (21-F, n = 50; 18-F, n = 36) with a mean valve area of 0.66 +/- 0.19 cm2 (21-F) and 0.54 +/- 0.15 cm2 (18-F), a mean age of 81.3 +/- 5.2 years (21-F) and 83.4 +/- 6.7 years (18-F), and a mean logistic EuroSCORE of 23.4 +/- 13.5% (21-F) and 19.1 +/- 11.1% (18-F) were recruited. Acute device success was 88%. Successful device implantation resulted in a marked reduction of aortic transvalvular gradients (mean pre 43.7 mm Hg vs. post 9.0 mm Hg, p < 0.001) with aortic regurgitation grade remaining unchanged. Acute procedural success rate was 74% (21-F: 78%; 18-F: 69%). Procedural mortality was 6%. Overall 30-day mortality rate was 12%; the combined rate of death, stroke, and myocardial infarction was 22%. CONCLUSIONS: Treatment of severe aortic valve stenosis in high-risk patients with percutaneous implantation of the CoreValve prosthesis is feasible and associated with a lower mortality rate than predicted by risk algorithms.
Resumo:
The RNome of a cell is highly diverse and consists besides messenger RNAs (mRNAs), transfer RNAs (tRNAs), and ribosomal RNAs (rRNAs) also of other small and long transcript entities without apparent coding potential. This class of molecules, commonly referred to as non-protein-coding RNAs (ncRNAs), is involved in regulating numerous biological processes and thought to contribute to cellular complexity. Therefore, much effort is put into their identification and further functional characterization. Here we provide a cost-effective and reliable method for cDNA library construction of small RNAs in the size range of 20-500 residues. The effectiveness of the described method is demonstrated by the analysis of ribosome-associated small RNAs in the eukaryotic model organism Trypanosoma brucei.
Resumo:
BACKGROUND The safety and efficacy of new-generation drug-eluting stents (DES) in women with multiple atherothrombotic risk (ATR) factors is unclear. METHODS AND RESULTS We pooled patient-level data for women enrolled in 26 randomized trials. Study population was categorized based on the presence or absence of high ATR, which was defined as having history of diabetes mellitus, prior percutaneous or surgical coronary revascularization, or prior myocardial infarction. The primary end point was major adverse cardiovascular events defined as a composite of all-cause mortality, myocardial infarction, or target lesion revascularization at 3 years of follow-up. Out of 10 449 women included in the pooled database, 5333 (51%) were at high ATR. Compared with women not at high ATR, those at high ATR had significantly higher risk of major adverse cardiovascular events (15.8% versus 10.6%; adjusted hazard ratio: 1.53; 95% confidence interval: 1.34-1.75; P=0.006) and all-cause mortality. In high-ATR risk women, the use of new-generation DES was associated with significantly lower risk of 3-year major adverse cardiovascular events (adjusted hazard ratio: 0.69; 95% confidence interval: 0.52-0.92) compared with early-generation DES. The benefit of new-generation DES on major adverse cardiovascular events was uniform between high-ATR and non-high-ATR women, without evidence of interaction (Pinteraction=0.14). At landmark analysis, in high-ATR women, stent thrombosis rates were comparable between DES generations in the first year, whereas between 1 and 3 years, stent thrombosis risk was lower with new-generation devices. CONCLUSIONS Use of new-generation DES even in women at high ATR is associated with a benefit consistent over 3 years of follow-up and a substantial improvement in very-late thrombotic safety.
Resumo:
Insect bite hypersensitivity (IBH) is an IgE-mediated dermatitis of horses caused by bites of Culicoides spp. IBH does not occur in Iceland where Culicoides are absent. However, following importation into continental Europe where Culicoides are present, >or=50% of Icelandic horses (1st generation) develop IBH but
Resumo:
A new generation of high definition computed tomography (HDCT) 64-slice devices complemented by a new iterative image reconstruction algorithm-adaptive statistical iterative reconstruction, offer substantially higher resolution compared to standard definition CT (SDCT) scanners. As high resolution confers higher noise we have compared image quality and radiation dose of coronary computed tomography angiography (CCTA) from HDCT versus SDCT. Consecutive patients (n = 93) underwent HDCT, and were compared to 93 patients who had previously undergone CCTA with SDCT matched for heart rate (HR), HR variability and body mass index (BMI). Tube voltage and current were adapted to the patient's BMI, using identical protocols in both groups. The image quality of all CCTA scans was evaluated by two independent readers in all coronary segments using a 4-point scale (1, excellent image quality; 2, blurring of the vessel wall; 3, image with artefacts but evaluative; 4, non-evaluative). Effective radiation dose was calculated from DLP multiplied by a conversion factor (0.014 mSv/mGy × cm). The mean image quality score from HDCT versus SDCT was comparable (2.02 ± 0.68 vs. 2.00 ± 0.76). Mean effective radiation dose did not significantly differ between HDCT (1.7 ± 0.6 mSv, range 1.0-3.7 mSv) and SDCT (1.9 ± 0.8 mSv, range 0.8-5.5 mSv; P = n.s.). HDCT scanners allow low-dose 64-slice CCTA scanning with higher resolution than SDCT but maintained image quality and equally low radiation dose. Whether this will translate into higher accuracy of HDCT for CAD detection remains to be evaluated.
Resumo:
With the advent of high through-put sequencing (HTS), the emerging science of metagenomics is transforming our understanding of the relationships of microbial communities with their environments. While metagenomics aims to catalogue the genes present in a sample through assessing which genes are actively expressed, metatranscriptomics can provide a mechanistic understanding of community inter-relationships. To achieve these goals, several challenges need to be addressed from sample preparation to sequence processing, statistical analysis and functional annotation. Here we use an inbred non-obese diabetic (NOD) mouse model in which germ-free animals were colonized with a defined mixture of eight commensal bacteria, to explore methods of RNA extraction and to develop a pipeline for the generation and analysis of metatranscriptomic data. Applying the Illumina HTS platform, we sequenced 12 NOD cecal samples prepared using multiple RNA-extraction protocols. The absence of a complete set of reference genomes necessitated a peptide-based search strategy. Up to 16% of sequence reads could be matched to a known bacterial gene. Phylogenetic analysis of the mapped ORFs revealed a distribution consistent with ribosomal RNA, the majority from Bacteroides or Clostridium species. To place these HTS data within a systems context, we mapped the relative abundance of corresponding Escherichia coli homologs onto metabolic and protein-protein interaction networks. These maps identified bacterial processes with components that were well-represented in the datasets. In summary this study highlights the potential of exploiting the economy of HTS platforms for metatranscriptomics.