3 resultados para Hierarchical Intervention

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Delineating brain tumor boundaries from magnetic resonance images is an essential task for the analysis of brain cancer. We propose a fully automatic method for brain tissue segmentation, which combines Support Vector Machine classification using multispectral intensities and textures with subsequent hierarchical regularization based on Conditional Random Fields. The CRF regularization introduces spatial constraints to the powerful SVM classification, which assumes voxels to be independent from their neighbors. The approach first separates healthy and tumor tissue before both regions are subclassified into cerebrospinal fluid, white matter, gray matter and necrotic, active, edema region respectively in a novel hierarchical way. The hierarchical approach adds robustness and speed by allowing to apply different levels of regularization at different stages. The method is fast and tailored to standard clinical acquisition protocols. It was assessed on 10 multispectral patient datasets with results outperforming previous methods in terms of segmentation detail and computation times.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Published evidence suggests that aspects of trial design lead to biased intervention effect estimates, but findings from different studies are inconsistent. This study combined data from 7 meta-epidemiologic studies and removed overlaps to derive a final data set of 234 unique meta-analyses containing 1973 trials. Outcome measures were classified as "mortality," "other objective," "or subjective," and Bayesian hierarchical models were used to estimate associations of trial characteristics with average bias and between-trial heterogeneity. Intervention effect estimates seemed to be exaggerated in trials with inadequate or unclear (vs. adequate) random-sequence generation (ratio of odds ratios, 0.89 [95% credible interval {CrI}, 0.82 to 0.96]) and with inadequate or unclear (vs. adequate) allocation concealment (ratio of odds ratios, 0.93 [CrI, 0.87 to 0.99]). Lack of or unclear double-blinding (vs. double-blinding) was associated with an average of 13% exaggeration of intervention effects (ratio of odds ratios, 0.87 [CrI, 0.79 to 0.96]), and between-trial heterogeneity was increased for such studies (SD increase in heterogeneity, 0.14 [CrI, 0.02 to 0.30]). For each characteristic, average bias and increases in between-trial heterogeneity were driven primarily by trials with subjective outcomes, with little evidence of bias in trials with objective and mortality outcomes. This study is limited by incomplete trial reporting, and findings may be confounded by other study design characteristics. Bias associated with study design characteristics may lead to exaggeration of intervention effect estimates and increases in between-trial heterogeneity in trials reporting subjectively assessed outcomes.