4 resultados para Hemolymph

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Spiders, like all arthropods, exclusively rely on an innate immune system localized in the hemocytes to protect against pathogen invasion. In the hemocytes of the wandering spider Cupiennius salei (C. salei), defensin expression was found to be constitutive. Defensins belong to the group of antimicrobial peptides, which appear in most taxonomic groups, and play an essential role in innate immunity. It has further been reported that during the primary immune answer of C. salei, the peptide content of hemocytes changes markedly, which may indicate the release of defensins from the hemocytes. However, no data on the peptide levels in C. salei hemolymph has so far been published. Formerly, the involvement in the primary immune answer was considered the only function of defensins. However, recent findings strongly suggest that the importance of defensins goes far beyond. There is evidence for defensins contributing to the adaptive immune response, to angiogenesis, and furthermore to tissue repair, i.e. to a variety of essential processes in living organisms. To date, only very little is known about the identity of C. salei defensins and their detailed mode of action. The goal of the work presented herein is the identification of hitherto unknown C. salei defensins in hemocytes and the hemolymph. Moreover, the levels of defensin expression under differential conditions are compared by the means of liquid chromatography-tandem mass spectrometry (LC-MS/MS).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Spiders, as all other arthropods, have an open circulatory system, and their body fluid, the hemolymph, freely moves between lymphatic vessels and the body cavities (see Wirkner and Huckstorf 2013). The hemolymph can be considered as a multifunctional organ, central for locomotion (Kropf 2013), respiration (Burmester 2013) and nutrition, and it amounts to approximately 20 % of a spider’s body weight. Any injury includes not only immediate hemolymph loss but also pathogen attacks and subsequent infections. Therefore spiders have to react to injuries in a combined manner to stop fluid loss and to defend against microbial invaders. This is achieved by an innate immune system which involves several host defence systems such as hemolymph coagulation and the production of a variety of defensive substances (Fukuzawa et al.2008). In spiders, the immune system is localised in hemocytes which are derived from the myocardium cells of the heart wall where they are produced as prohemocytes and from where they are released as different cell types into the hemolymph (Seitz 1972). They contribute to the defence against pathogens by phagocytosis, nodulation and encapsulation of invaders. The humoral response includes mechanisms which induce melanin production to destroy pathogens, a clotting cascade to stop hemolymph loss and the constitutive production of several types of antimicrobial peptides, which are stored in hemocyte granules and released into the hemolymph (Fukuzawa et al.2008) (Fig.7.1). The immune system of spiders is an innate immune system. It is hemolymph-based and characterised by a broad but not very particular specificity. Its advantage is a fast response within minutes to a few hours. This is in contrast to the adaptive immune system of vertebrates which can react to very specific pathogens, thus resulting in much more specific responses. Moreover, it creates an immunological memory during the lifetime of the species. The disadvantage is that it needs more time to react with antibody production, usually many hours to a few days, and needs to be built up during early ontogenesis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The most abundant cell types in the hemolymph of Cupiennius salei are plasmatocytes (70–80%) and granulocytes (20–30%). Both cells differ in shape, cytochemical and transmission electron microscopy staining of their cytoplasma and granules. According to MALDI-IMS (matrix-assisted laser desorption ionization mass spectrometry imaging), granulocytes exhibit ctenidin 1 (9510 Da) and ctenidin 3 (9568 Da), SIBD-1 (8675 Da), and unknown peptides with masses of 2207 and 6239 Da. Plasmatocytes exhibit mainly a mass of 6908 Da. Unknown peptides with masses of 1546 and 1960 Da were detected in plasmatocytes and granulocytes. Transmission electron microscopy confirms the presence of two compounds in one granule and cytochemical staining (light microscopy) tends to support this view. Two further hemocyte types (cyanocytes containing hemocyanin and prehemocytes as stem cells) are only rarely detected in the hemolymph. These four hemocyte types constitute the cellular part of the spider immune system and this is discussed in view of arachnid hemocyte evolution.