8 resultados para HelMet
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
OBJECTIVE: Patient-ventilator synchrony during non-invasive pressure support ventilation with the helmet device is often compromised when conventional pneumatic triggering and cycling-off were used. A possible solution to this shortcoming is to replace the pneumatic triggering with neural triggering and cycling-off-using the diaphragm electrical activity (EA(di)). This signal is insensitive to leaks and to the compliance of the ventilator circuit. DESIGN: Randomized, single-blinded, experimental study. SETTING: University Hospital. PARTICIPANTS AND SUBJECTS: Seven healthy human volunteers. INTERVENTIONS: Pneumatic triggering and cycling-off were compared to neural triggering and cycling-off during NIV delivered with the helmet. MEASUREMENTS AND RESULTS: Triggering and cycling-off delays, wasted efforts, and breathing comfort were determined during restricted breathing efforts (<20% of voluntary maximum EA(di)) with various combinations of pressure support (PSV) (5, 10, 20 cm H(2)O) and respiratory rates (10, 20, 30 breath/min). During pneumatic triggering and cycling-off, the subject-ventilator synchrony was progressively more impaired with increasing respiratory rate and levels of PSV (p < 0.001). During neural triggering and cycling-off, effect of increasing respiratory rate and levels of PSV on subject-ventilator synchrony was minimal. Breathing comfort was higher during neural triggering than during pneumatic triggering (p < 0.001). CONCLUSIONS: The present study demonstrates in healthy subjects that subject-ventilator synchrony, trigger effort, and breathing comfort with a helmet interface are considerably less impaired during increasing levels of PSV and respiratory rates with neural triggering and cycling-off, compared to conventional pneumatic triggering and cycling-off.
Resumo:
Individuals show compensatory health behavior (e.g. safer cycling without helmet) to compensate for risky behavior. Compensatory health behavior is facilitated by high self-efficacy. A total of 134 cyclists with different helmet wearing frequencies (occasionally (OH) or never helmet (NH)) were asked to fill out a questionnaire on their compensatory health behavior when cycling without a helmet and on their general self-efficacy. An interaction between self-efficacy and use of a helmet on compensatory health behavior was found. OH-users with high self-efficacy showed more compensatory health behavior than OH-users with low self-efficacy. This effect was not present in NH-users. We assume that OH-users engage in compensatory health behavior, whereas NH-users remain unprotected by behavioral adaptation. These persons are vulnerable and may require specific attention in preventive actions.
Resumo:
The association between helmet use during alpine skiing and incidence and severity of head injuries was analyzed. All patients admitted to a level 1 trauma center for traumatic brain injuries (TBIs) sustained from skiing accidents during the seasons 2000-2001 and 2010-2011 were eligible. Primary outcome was the association between helmet use and severity of TBI measured by Glasgow Coma Scale (GCS), computed tomography (CT) results, and necessity of neurosurgical intervention. Of 1362 patients injured during alpine skiing, 245 (18%) sustained TBI and were included. TBI was fatal in 3%. Head injury was in 76% minor (Glasgow Coma Scale, 13-15), 6% moderate, and 14% severe. Number and percentage of TBI patients showed no significant trend over the investigated seasons. Forty-five percent of the 245 patients had pathological CT findings and 26% of these required neurosurgical intervention. Helmet use increased from 0% in 2000-2001 to 71% in 2010-2011 (p<0.001). The main analysis, comparing TBI in patients with or without a helmet, showed an adjusted odds ratio (OR) of 1.44 (p=0.430) for suffering moderate-to-severe head injury in helmet users. Analyses comparing off-piste to on-slope skiers revealed a significantly increased OR among off-piste skiers of 7.62 (p=0.004) for sustaining a TBI requiring surgical intervention. Despite increases in helmet use, we found no decrease in severe TBI among alpine skiers. Logistic regression analysis showed no significant difference in TBI with regard to helmet use, but increased risk for off-piste skiers. The limited protection of helmets and dangers of skiing off-piste should be targeted by prevention programs.
Resumo:
BACKGROUND Since the introduction of helmets in winter sports there is on-going debate on whether they decrease traumatic brain injuries (TBI). METHODS This cohort study included 117 adult (≥ 16 years) snowboarders with TBI admitted to a level I alpine trauma center in Switzerland between 2000/2001 and 2010/2011. The primary objective was to examine the association between helmet use and moderate-to-severe TBI. Secondary objectives were to describe the epidemiology of TBI during the past decade in relation to increased helmet use. RESULTS Of 691 injured snowboarders evaluated, 117 (17%) suffered TBI. Sixty-six percent were men (median age, 23 years). Two percent of accidents were fatal. Ninety-two percent of patients sustained minor, 1% moderate, and 7% severe TBI according to the Glasgow coma scale. Pathologic computed tomography findings were present in 16% of patients, 26% of which required surgery. Eighty-three percent of TBIs occurred while riding on-slope. There was no trend in the TBI rate during the studied period, although helmet use increased from 10% to 69%. Comparing patients with and without a helmet showed no significant difference in odds ratios for the severity of TBI. However, of the 5 patients requiring surgery only 1 was wearing a helmet. Off-piste compared with on-slope snowboarders showed an odds ratio of 26.5 (P = 0.003) for sustaining a moderate-to-severe TBI. CONCLUSIONS Despite increased helmet use we found no decrease in TBI among snowboarders. The possibility of TBI despite helmet use and the dangers of riding off-piste should be a focus of future prevention programs.
Resumo:
OBJECTIVE: To analyse risk factors in alpine skiing. DESIGN: A controlled multicentre survey of injured and non-injured alpine skiers. SETTING: One tertiary and two secondary trauma centres in Bern, Switzerland. PATIENTS AND METHODS: All injured skiers admitted from November 2007 to April 2008 were analysed using a completed questionnaire incorporating 15 parameters. The same questionnaire was distributed to non-injured controls. Multiple logistic regression was performed. Patterns of combined risk factors were calculated by inference trees. A total of 782 patients and 496 controls were interviewed. RESULTS: Parameters that were significant for the patients were: high readiness for risk (p = 0.0365, OR 1.84, 95% CI 1.04 to 3.27); low readiness for speed (p = 0.0008, OR 0.29, 95% CI 0.14 to 0.60); no aggressive behaviour on slopes (p<0.0001, OR 0.19, 95% CI 0.09 to 0.37); new skiing equipment (p = 0.0228, OR 59, 95% CI 0.37 to 0.93); warm-up performed (p = 0.0015, OR 1.79, 95% CI 1.25 to 2.57); old snow compared with fresh snow (p = 0.0155, OR 0.31, 95% CI 0.12 to 0.80); old snow compared with artificial snow (p = 0.0037, OR 0.21, 95% CI 0.07 to 0.60); powder snow compared with slushy snow (p = 0.0035, OR 0.25, 95% CI 0.10 to 0.63); drug consumption (p = 0.0044, OR 5.92, 95% CI 1.74 to 20.11); and alcohol abstinence (p<0.0001, OR 0.14, 95% CI 0.05 to 0.34). Three groups at risk were detected: (1) warm-up 3-12 min, visual analogue scale (VAS)(speed) >4 and bad weather/visibility; (2) VAS(speed) 4-7, icy slopes and not wearing a helmet; (3) warm-up >12 min and new skiing equipment. CONCLUSIONS: Low speed, high readiness for risk, new skiing equipment, old and powder snow, and drug consumption are significant risk factors when skiing. Future work should aim to identify more precisely specific groups at risk and develop recommendations--for example, a snow weather index at valley stations.
Resumo:
A man wearing no protective helmet was struck by a motor vehicle while riding a bicycle. He was loaded on his left side, and the impact point of his head was his occiput on the car roof girder. He was immediately transported to the general hospital, where he passed away. Postmortem examination using multi-slice computed tomography (MSCT) revealed an extensively comminuted fracture of the posterior part and the base of the skull. Observed were deep direct and contrecoup brain bruises, with the independent fractures of the roof of the both orbits. Massive subdural and subarachnoidal hemorrhage with cerebral edema and shifting of the mid-line towards left side were also detected. MSCT and autopsy results were compared and the body injuries were correlated to vehicle damages. In conclusion, postmortem imaging is a good forensic visualization tool with great potential for documentation and examination of body injuries and pathology.