1 resultado para Heave compensation control

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Unilateral damage to the labyrinth and the vestibular nerve cause rotational vertigo, postural imbalance, oculomotor disorders and spatial disorientation. Electrophysiological investigations in animals revealed that such deficits are partly due to imbalanced spontaneous activity and sensitivity to motion in neurons located in the ipsilesional and contralesional vestibular nuclei. Neurophysiological reorganizations taking place in the vestibular nuclei are the basis of the decline of the symptoms over time, a phenomenon known as vestibular compensation. Vestibular compensation is facilitated by motor activity and sensory experience, and current rehabilitation programs favor physical activity during the acute stage of a unilateral vestibular loss. Unfortunately, vestibular-defective patients tend to develop strategies in order to avoid movements causing imbalance and nausea (in particular body movements towards the lesioned side), which impedes vestibular compensation. Neuroanatomical evidence suggests a cortical control of postural and oculomotor reflexes based on corticofugal projections to the vestibular nuclei and, therefore, the possibility to manipulate vestibular functions through top-down mechanisms. Based on evidence from neuroimaging studies showing that imagined whole-body movements can activate part of the vestibular cortex, we propose that mental imagery of whole-body rotations to the lesioned and to the healthy side will help rebalancing the activity in the ipsilesional and contralesional vestibular nuclei. Whether imagined whole-body rotations can improve vestibular compensation could be tested in a randomized controlled study in such patients beneficiating, or not, from a mental imagery training. If validated, this hypothesis will help developing a method contributing to reduce postural instability and falls in vestibular-defective patients. Imagined whole-body rotations thus could provide a simple, safe, home-based and self-administered therapeutic method with the potential to overcome the inconvenience related to physical movements.