6 resultados para Heat transfer enhancement

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Due to the existence of a velocity slip and temperature jump on the solid walls, the heat transfer in microchannels significantly differs from the one in the macroscale. In our research, we have focused on the pressure driven gas flows in a simple finite microchannel geometry, with an entrance and an outlet, for low Reynolds (Re<200) and low Knudsen (Kn<0.01) numbers. For such a regime, the slip induced phenomena are strongly connected with the viscous effects. As a result, heat transfer is also significantly altered. For the optimization of flow conditions, we have investigated various temperature gradient configurations, additionally changing Reynolds and Knudsen numbers. The entrance effects, slip flow, and temperature jump lead to complex relations between flow behavior and heat transfer. We have shown that slip effects are generally insignificant for flow behavior. However, two configuration setups (hot wall cold gas and cold wall hot gas) are affected by slip in distinguishably different ways. For the first one, which concerns turbomachinery, the mass flow rate can increase by about 1% in relation to the no-slip case, depending on the wall-gas temperature difference. Heat transfer is more significantly altered. The Nusselt number between slip and no-slip cases at the outlet of the microchannel is increased by about 10%.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND: Mild perioperative hypothermia increases the risk of several severe complications. Perioperative patient warming to preserve normothermia has thus become routine, with forced-air warming being used most often. In previous studies, various resistive warming systems have shown mixed results in comparison with forced-air. Recently, a polymer-based resistive patient warming system has been developed. We compared the efficacy of a standard forced-air warming system with the resistive polymer system in volunteers. METHODS: Eight healthy volunteers participated, each on two separate study days. Unanesthetized volunteers were cooled to a core temperature (tympanic membrane) of 34 degrees C by application of forced-air at 10 degrees C and a circulating-water mattress at 4 degrees C. Meperidine and buspirone were administered to prevent shivering. In a randomly designated order, volunteers were then rewarmed (until their core temperatures reached 36 degrees C) with one of the following active warming systems: (1) forced-air warming (Bair Hugger warming cover #300, blower #750, Arizant, Eden Prairie, MN); or (2) polymer fiber resistive warming (HotDog whole body blanket, HotDog standard controller, Augustine Biomedical, Eden Prairie, MN). The alternate system was used on the second study day. Metabolic heat production, cutaneous heat loss, and core temperature were measured. RESULTS: Metabolic heat production and cutaneous heat loss were similar with each system. After a 30-min delay, core temperature increased nearly linearly by 0.98 (95% confidence interval 0.91-1.04) degrees C/h with forced-air and by 0.92 (0.85-1.00) degrees C/h with resistive heating (P = 0.4). CONCLUSIONS: Heating efficacy and core rewarming rates were similar with full-body forced-air and full-body resistive polymer heating in healthy volunteers.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This paper addresses the microscale heat transfer problem from heated lattice to the gas. A micro-device for enhanced heat transfer is presented and numerically investigated. Thermal creep induces 3-D vortex structures in the vicinity of the lattice. The gas flow is in the slip flow regime (Knudsen number Kn⩽0.1Kn⩽0.1). The simulations are performed using slip flow Navier–Stokes equations with boundary condition formulations proposed by Maxwell and Smoluchowski. In this study the wire thicknesses and distances of the heated lattice are varied. The surface geometrical properties alter significantly heat flux through the surface.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

For a three-dimensional vertically-oriented fault zone, we consider the coupled effects of fluid flow, heat transfer and reactive mass transport, to investigate the patterns of fluid flow, temperature distribution, mineral alteration and chemically induced porosity changes. We show, analytically and numerically, that finger-like convection patterns can arise in a vertically-oriented fault zone. The onset and patterns of convective fluid flow are controlled by the Rayleigh number which is a function of the thermal properties of the fluid and the rock, the vertical temperature gradient, and the height and the permeability of the fault zone. Vigorous fluid flow causes low temperature gradients over a large region of the fault zone. In such a case, flow across lithological interfaces becomes the most important mechanism for the formation of sharp chemical reaction fronts. The degree of rock buffering, the extent and intensity of alteration, the alteration mineralogy and in some cases the formation of ore deposits are controlled by the magnitude of the flow velocity across these compositional interfaces in the rock. This indicates that alteration patterns along compositional boundaries in the rock may provide some insights into the convection pattern. The advective mass and heat exchanges between the fault zone and the wallrock depend on the permeability contrast between the fault zone and the wallrock. A high permeability contrast promotes focussed convective flow within the fault zone and diffusive exchange of heat and chemical reactants between the fault zone and the wallrock. However, a more gradual permeability change may lead to a regional-scale convective flow system where the flow pattern in the fault affects large-scale fluid flow, mass transport and chemical alteration in the wallrocks

Relevância:

40.00% 40.00%

Publicador:

Resumo:

EET grown ohm: Excess electron transfer (EET) was observed within a DNA duplex containing π-stacked phenothiazine as an electron donor, phenanthrenes as electron carriers and 5-bromouracil as an electron trap. Increasing the number of phenanthrenyl base pairs increased EET efficiency.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

OBJECTIVE: In recent years research investigating various health benefits of Taiji practice has markedly increased. Despite this growing scientific interest, essential questions such as to what extent a Taiji course may exert noticeable effects in participants’ everyday life, what these effects are, and how and where potential transfer effects occur, have hardly been considered. The aim of our study was to explore transfer effects from a Taiji course into participants’ daily lives. METHODS: We conducted a longitudinal observational study in 45 healthy participants at the end of their three-month Taiji beginner course (tp1) and at two months (tp2) as well as one year after course completion (tp3). Participants were asked to report their Taiji practice behavior at all time points, as well as to rate and describe perceived transfer effects of Taiji course contents on their daily life at tp1 and tp3. RESULTS: Transfer effects were reported by 91.1% of all respondents after course completion (tp1) and persisted in 73.3% at the one-year follow-up assessment (tp3), counting “increase of self-efficacy”, “improvement of stress management”, and “increase of body awareness” as the most frequently mentioned effects. Transfer effects predominantly occurred in participants’ work and social environments, as well as during everyday activities in public areas. While selfreliant Taiji practice frequency significantly decreased from 82.2% at tp1 to 55.6% at tp3 (P < 0.001), the magnitude of self-reported transfer effects did not (P = 0.35). As explorative analyses revealed, regular Taiji course attendance was highly correlated with stronger transfer effects at tp1 (r = 0.51; P < 0.001) and tp3 (r = 0.35; P = 0.020). Participants reporting high self-reliant Taiji practice frequency at tp2 were likely to maintain a regular practice routine at tp3 (r = 0.42; P < 0.004), whereas self-reliant practice frequency and transfer effects at tp1 were positively correlated with self-reliant practice frequency at tp3 on a trend level (r < 0.27; P > 0.08). CONCLUSION: Our data underline the importance of regular course participation for pronounced and long lasting transfer effects into participants’ everyday life. We discuss that several context and process-related aspects of a Taiji intervention are potentially relevant factors for enhancement of transfer effect.