11 resultados para Hawes, Mary Bonneau Leigh
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
In low-income settings, treatment failure is often identified using CD4 cell count monitoring. Consequently, patients remain on a failing regimen, resulting in a higher risk of transmission. We investigated the benefit of routine viral load monitoring for reducing HIV transmission.
Resumo:
A 21-year-old previously-well woman who was undergoing medical investigations for problems with balance and suspected multiple sclerosis, developed a headache and breathing difficulties, and died suddenly and unexpected at home. The autopsy was unremarkable except for pulmonary and cerebral oedema. However, subsequent microscopy of the brain revealed characteristic features of Leigh syndrome with multifocal areas of astrogliosis, capillary proliferation, and parenchymal vacuolation. While Leigh syndrome is more commonly diagnosed in infancy, manifestations may occur throughout early life into adulthood. Sudden and unexpected death is a rare presentation that may be associated with cerebral necrosis and oedema. An awareness of the variable manifestations of Leigh syndrome is necessary in forensic practice as not all cases will present in a typical manner and sudden death may occur before a diagnosis has been established. The heritable nature of this condition makes accuracy of diagnosis essential.
Resumo:
OBJECTIVES Mortality in patients starting antiretroviral therapy (ART) is higher in Malawi and Zambia than in South Africa. We examined whether different monitoring of ART (viral load [VL] in South Africa and CD4 count in Malawi and Zambia) could explain this mortality difference. DESIGN Mathematical modelling study based on data from ART programmes. METHODS We used a stochastic simulation model to study the effect of VL monitoring on mortality over 5 years. In baseline scenario A all parameters were identical between strategies except for more timely and complete detection of treatment failure with VL monitoring. Additional scenarios introduced delays in switching to second-line ART (scenario B) or higher virologic failure rates (due to worse adherence) when monitoring was based on CD4 counts only (scenario C). Results are presented as relative risks (RR) with 95% prediction intervals and percent of observed mortality difference explained. RESULTS RRs comparing VL with CD4 cell count monitoring were 0.94 (0.74-1.03) in scenario A, 0.94 (0.77-1.02) with delayed switching (scenario B) and 0.80 (0.44-1.07) when assuming a 3-times higher rate of failure (scenario C). The observed mortality at 3 years was 10.9% in Malawi and Zambia and 8.6% in South Africa (absolute difference 2.3%). The percentage of the mortality difference explained by VL monitoring ranged from 4% (scenario A) to 32% (scenarios B and C combined, assuming a 3-times higher failure rate). Eleven percent was explained by non-HIV related mortality. CONCLUSIONS VL monitoring reduces mortality moderately when assuming improved adherence and decreased failure rates.
Resumo:
In several studies of antiretroviral treatment (ART) programs for persons with human immunodeficiency virus infection, investigators have reported that there has been a higher rate of loss to follow-up (LTFU) among patients initiating ART in recent years than among patients who initiated ART during earlier time periods. This finding is frequently interpreted as reflecting deterioration of patient retention in the face of increasing patient loads. However, in this paper we demonstrate by simulation that transient gaps in follow-up could lead to bias when standard survival analysis techniques are applied. We created a simulated cohort of patients with different dates of ART initiation. Rates of ART interruption, ART resumption, and mortality were assumed to remain constant over time, but when we applied a standard definition of LTFU, the simulated probability of being classified LTFU at a particular ART duration was substantially higher in recently enrolled cohorts. This suggests that much of the apparent trend towards increased LTFU may be attributed to bias caused by transient interruptions in care. Alternative statistical techniques need to be used when analyzing predictors of LTFU-for example, using "prospective" definitions of LTFU in place of "retrospective" definitions. Similar considerations may apply when analyzing predictors of LTFU from treatment programs for other chronic diseases.