3 resultados para HapMap

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

10.00% 10.00%

Publicador:

Resumo:

β-blockers and β-agonists are primarily used to treat cardiovascular diseases. Inter-individual variability in response to both drug classes is well recognized, yet the identity and relative contribution of the genetic players involved are poorly understood. This work is the first genome-wide association study (GWAS) addressing the values and susceptibility of cardiovascular-related traits to a selective β(1)-blocker, Atenolol (ate), and a β-agonist, Isoproterenol (iso). The phenotypic dataset consisted of 27 highly heritable traits, each measured across 22 inbred mouse strains and four pharmacological conditions. The genotypic panel comprised 79922 informative SNPs of the mouse HapMap resource. Associations were mapped by Efficient Mixed Model Association (EMMA), a method that corrects for the population structure and genetic relatedness of the various strains. A total of 205 separate genome-wide scans were analyzed. The most significant hits include three candidate loci related to cardiac and body weight, three loci for electrocardiographic (ECG) values, two loci for the susceptibility of atrial weight index to iso, four loci for the susceptibility of systolic blood pressure (SBP) to perturbations of the β-adrenergic system, and one locus for the responsiveness of QTc (p<10(-8)). An additional 60 loci were suggestive for one or the other of the 27 traits, while 46 others were suggestive for one or the other drug effects (p<10(-6)). Most hits tagged unexpected regions, yet at least two loci for the susceptibility of SBP to β-adrenergic drugs pointed at members of the hypothalamic-pituitary-thyroid axis. Loci for cardiac-related traits were preferentially enriched in genes expressed in the heart, while 23% of the testable loci were replicated with datasets of the Mouse Phenome Database (MPD). Altogether these data and validation tests indicate that the mapped loci are relevant to the traits and responses studied.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The diversity of populations in domestic species offers great opportunities to study genome response to selection. The recently published Sheep HapMap dataset is a great example of characterization of the world wide genetic diversity in sheep. In this study, we re-analyzed the Sheep HapMap dataset to identify selection signatures in worldwide sheep populations. Compared to previous analyses, we made use of statistical methods that (i) take account of the hierarchical structure of sheep populations, (ii) make use of linkage disequilibrium information and (iii) focus specifically on either recent or older selection signatures. We show that this allows pinpointing several new selection signatures in the sheep genome and distinguishing those related to modern breeding objectives and to earlier post-domestication constraints. The newly identified regions, together with the ones previously identified, reveal the extensive genome response to selection on morphology, color and adaptation to new environments.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

As part of the global sheep Hapmap project, 24 individuals from each of seven indigenous Swiss sheep breeds (Bundner Oberländer sheep (BOS), Engadine Red sheep (ERS), Swiss Black-Brown Mountain sheep (SBS), Swiss Mirror sheep (SMS), Swiss White Alpine (SWA) sheep, Valais Blacknose sheep (VBS) and Valais Red sheep (VRS)), were genotyped using Illumina’s Ovine SNP50 BeadChip. In total, 167 animals were subjected to a detailed analysis for genetic diversity using 45 193 informative single nucleotide polymorphisms. The results of the phylogenetic analyses supported the known proximity between populations such as VBS and VRS or SMS and SWA. Average genomic relatedness within a breed was found to be 12 percent (BOS), 5 percent (ERS), 9 percent (SBS), 10 percent (SMS), 9 percent (SWA), 12 percent (VBS) and 20 percent (VRS). Furthermore, genomic relationships between breeds were found for single individuals from SWA and SMS, VRS and VBS as well as VRS and BOS. In addition, seven out of 40 indicated parent–offspring pairs could not be confirmed. These results were further supported by results from the genome-wide population cluster analysis. This study provides a better understanding of fine-scale population structures within and between Swiss sheep breeds. This relevant information will help to increase the conservation activities of the local Swiss sheep breeds.